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Abstract—Designing rotational symmetry fields on surfaces is an important task for a wide range of graphics applications. This work

introduces a rigorous and practical approach for automatic N-RoSy field design on arbitrary surfaces with user-defined field topologies.

The user has full control of the number, positions, and indexes of the singularities (as long as they are compatible with necessary

global constraints), the turning numbers of the loops, and is able to edit the field interactively. We formulate N-RoSy field construction

as designing a Riemannian metric such that the holonomy along any loop is compatible with the local symmetry of N-RoSy fields. We

prove the compatibility condition using discrete parallel transport. The complexity of N-RoSy field design is caused by curvatures. In

our work, we propose to simplify the Riemannian metric to make it flat almost everywhere. This approach greatly simplifies the process

and improves the flexibility such that it can design N-RoSy fields with single singularity and mixed-RoSy fields. This approach can also

be generalized to construct regular remeshing on surfaces. To demonstrate the effectiveness of our approach, we apply our design

system to pen-and-ink sketching and geometry remeshing. Furthermore, based on our remeshing results with high global symmetry,

we generate Celtic knots on surfaces directly.

Index Terms—metric, rotational symmetry, design, surface, parameterization, remeshing.
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1 INTRODUCTION

MANY objects in computer graphics and digital geo-
metry processing can be described by rotational

symmetry fields, such as brush strokes and hatches in
nonphotorealistic rendering, regular patterns in texture
synthesis, and principal curvature directions in surface
parameterizations and remeshing. N-way rotational sym-
metry (N-RoSy) fields have been proposed to model these
objects. Formally, an N-RoSy field can be considered as a
multivalued vector field; at each position, there exist
N vectors in the tangent space, each differed by a rotation
of integer multiples of 2�

N .
The most fundamental requirement for an N-RoSy field

design system is to allow the user to fully control the
topology of the field, including the number, positions, and
indexes of the singularities, and the turning numbers of the
loops [1], [2]. Automatic generation of N-RoSy fields with
user-prescribed topologies remains a major challenge.

The method in [1] generates fields with user-defined
singularities, but it also produces excess singularities, which
requires further singularity pair cancellation and singular-
ity movement operations. However, canceling singularities
completely without significantly affecting the field is
challenging. In general cases, cleaning up all the extra
singularities is almost impractical. The method in [2] is the
first one that guarantees the correct topology of the field,
but for the purpose of generating smooth RoSy fields with
specified singularities, it requires the user to provide an
initial field with all singularities at the desired positions. In
practice, finding such an initial field is the most challenging
step. For example, a common user can hardly imagine a
smooth vector field with only one singularity as shown in
Figs. 2 and 8. Although such examples are extreme in some
sense, fields with less singularities are often preferred,
because singularities cause visual artifacts in real applica-
tions. Moreover, the power of our approach is that users can
specify any number of singularities, with desired curvatures
and positions, as long as the total Gaussian curvature of the
surface is 2��ðSÞ (a topology-related constant), where �ðSÞ
is the Euler characteristic of the surface. By using fewer
singularities or placing singularities at invisible vertices
(hidden by occlusion or hardly seen from practical view-
points), artifacts can be significantly reduced.

In this work, we provide a rigorous and practical method
that allows the user to design N-RoSy fields with full
control of the topology (as long as they are compatible with
global constraints such as the Gauss-Bonnet theorem and
Poincaré-Hopf theorem) and without inputting any initial
field. Furthermore, the algorithm can automatically gen-
erate a smooth field with the desired topology and allow the
user to further modify it interactively.
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1.1 Main Idea

Our method is based on the following intuition inspired by

the work in [2]. An N-RoSy field has local symmetry that is

invariant under rotations of an integer multiple of 2�
N . A

surface has global symmetry, which is intrinsically deter-

mined by the Riemannian metric. If the global symmetry is

compatible with the symmetry of the N-RoSy fields, i.e., a

metric is found such that the holonomy along any loop is a

multiple of 2�
N , then smooth N-RoSy fields can be con-

structed on the surface directly.

Roughly speaking, if a surface admits an N-RoSy field,
then for any loop on the surface, the total turning angle of
the tangent vectors along the loop cancels the total turning
angle of the N-RoSy field along the loop. Fig. 7 provides
such an example where a genus-one polycubic surface
admits 4-RoSy fields.

Most existing N-RoSy field design methods focus on
adjusting the rotation of the field and keep the underlying
surface untapped. While these approaches have been
effective in some cases, it is difficult to enforce topological
guarantees such as minimal number of singularities.
Furthermore, these methods all require a constant N in
the N-RoSy fields. In this paper, we describe a novel
approach that modifies both the rotation of the field and the
rotations of the loops by deforming the surface. Our work
converts the problem of field design with user-defined
singularities to that of metric construction. The existence
and uniqueness of the solution are guaranteed by the Circle
Pattern theory in [3] and discrete Ricci flow in [4]. Existing
works are based on 1-forms, energy minimization, and
singularity movement/merging, and thus, the theoretic
argument for the existence of fields with exact singularity
locations and indexes is lacking.

This approach greatly simplifies the process and pro-
duces results that are quite challenging for the alternatives,
such as mixed-RoSy fields and remeshing in Fig. 1, as well as
fields with only one singular point in Figs. 2 and 8. We
further notice the distinction between N-RoSy fields and
regular remeshing (without T-vertices): field design sets
constraints to the rotational component of the holonomy,
while remeshing sets constraints not only in rotational
component, but also in translational component (i.e., gen-
eralized holonomy). Based on this, we are able to produce
compatible metric that admits regular remeshing, as shown
in Fig. 1, and related Celtic knots in Figs. 13 and 16.

1.2 Algorithm Pipeline

Our algorithm pipeline can be summarized as follows. In
the first stage, an initial smooth vector field is constructed
with the following steps:

1. the user specifies the desired singularities of the
vector field;

2. we compute a flat cone metric such that all the cone
singularities coincide with those of the field;
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Fig. 1. Metric-driven N-RoSy field design. (a-f) A 3-RoSy field, a 4-RoSy
field, a flat cone metric visualized as an obelisk, triangle-quad-mixed
remeshing based on the metric, quad remeshing, woven Celtic knot
design over the surface based on the quad remeshing. Closeups are
given for subfigures in the second row.

Fig. 2. Algorithm pipeline.



3. we parallel transport a tangent vector at the base
point to construct a parallel vector field; and

4. if the parallel field has jumps when it goes around
handles or circulates singularities, then we apply
two methods to eliminate the jumps: one is rotation
compensation that adjusts the rotation of the vector
field and another is metric compensation that modifies
the rotation of the loops by deforming the surface.

In the second stage, the vector field is further modified. we
interactively edit the rotation and magnitude of the vector
field to incorporate user constraints.

Fig. 2 illustrates the pipeline using rotation compensa-
tion method. Figs. 2a, 2b, 2c, 2d, and 2e correspond to the
first stage, while Figs. 2f and 2g correspond to the second
stage. In Fig. 2a, the user specifies the desired singula-
rities with both positions and indexes (Step 1). Here, only
one singularity is specified at the blue point with index
�2. The curves are homotopy group basis. In Fig. 2b, we
compute a flat metric, the curvature at the singularity is
�4�, everywhere else 0 (Step 2). The surface is cut along
the base curves and flattened to the plane. Note that the
boundaries of the same color can match each other by a
rigid motion. Practical algorithm for the purpose of field
design does not need to explicitly flatten the whole
surface onto a parameter domain. In Fig. 2c, we pull back
the parallel vector field in the parameter domain onto the
surface (Step 3). The field has discontinuities along the
red curve, which corresponds to where “wave fronts”
meet. It has no relation with the initial cut, only the result
of holonomy. In Fig. 2d, we compute a harmonic 1-form
to compensate the holonomy. In Fig. 2e The smooth
vector field is obtained after rotation compensation
(Step 4). A smooth N-RoSy field has been constructed
after the first stage. In Figs. 2f and 2g, the user inputs
geometric constraints (red arrows) to guide the direction
of the field, then the field is modified from Fig. 2f to 2g.

1.3 Contributions

In this work, holonomy plays the central role, which refers to
the total turning angle of the tangent vectors along a loop.
Holonomy represents the global symmetry of the surface.
This work introduces a metric-driven method for N-RoSy
field design (and remeshing). The major goal is to make the
global symmetry of the metric represented as holonomy to
be compatible with the local symmetry of N-RoSy field as
follows:

. We convert the N-RoSy field design problem (and
remeshing problem) to flat cone metric design with
constrained holonomy, propose to use flat cone
metric to simplify holonomy, and improve the
efficiency and efficacy of the algorithm. Further-
more, we give an explicit compatibility condition for
a parallel N-RoSy field with the metric and general-
ize it for symmetric tessellations.

. We give rigorous and practical algorithms to
construct N-RoSy fields with user fully controlled
singularities on general surfaces. The method pro-
duces RoSy fields with arbitrary homotopy types,
without excess singularities, and even with mixed-
RoSy types. The algorithm is automatic and allows
interactive editing.

Furthermore, we apply our remeshing method for the
geometric texture construction application to weave Celtic
knotwork on general surfaces, which requires highly
global symmetry.

Note that this work focuses on the design and manipula-
tion of metrics, which is different from other published
methods for RoSy (or vector) field design. The reason to use
new metric is to simplify the computation of holonomy. If
the original metric is used, different loops have different
holonomies. The dimension of the loop space is infinite,
therefore, the computation of all holonomy group is
intractable. Using the new metric, the homotopic loops
share the same holonomy, so the dimension of the homotopy
group is finite. Metric design is a powerful tool and has the
potential of being utilized for other graphics applications.

The organization of the paper is as follows: In Section 2,
we briefly review the most related works. In Section 3, we
give a brief introduction of the major concepts in Rieman-
nian geometry and generalize them to discrete surfaces, and
describe the theories for the compatibility between N-RoSy
and metric. In Section 4, we explain the algorithm in detail.
Finally, we report our experimental results in Section 5 and
conclude in Section 6 with insights and future directions of
research. All the proofs of our theoretic results can be found
in the Appendix.

2 PREVIOUS WORK

There has been a significant amount of work in the analysis
and design of N-RoSy fields, especially when N ¼ 1 (vector)
and 2(tensor). For a survey, we refer the readers to Palacios
and Zhang [1] and references therein. Here, we will only
mention the most relevant work.

There have been a number of vector field design systems
for surfaces, most of which are generated for a particular
graphics application such as texture synthesis [5], [6], [7],
fluid simulation [8], and vector field visualization [9], [10].
Systems providing topological control include [11], [12]. The
system of Chen et al. has also been extended to create periodic
orbits [13] and design tensor fields [14]. Fisher et al. introduce
a vector field design algorithm based on discrete exterior
calculus [15], which produces smooth fields incorporating
user constraints interactively through weighted least squares.

There has been some work on N-RoSy fields when
N > 2. Hertzmann and Zorin [16] and Ray et al. [17]
demonstrate that 4-RoSy fields are of great importance in
surface illustration and remeshing, respectively. Both works
also develop algorithms that can smooth the 4-RoSy fields
in order to reduce the noise in the fields. Later, Ray et al. [2]
provide the analysis of singularities on N-RoSys by
extending the Poincaré-Hopf theorem as well as describe
an algorithm in which a field with a minimal number of
singularities can be constructed based on user-specified
constraints and the Euler characteristic of the underlying
surface [2]. This is the first algorithm for direction field
design that guarantees the correctness of the topology of the
field. Palacios and Zhang provide comprehensive analysis
for rotational symmetry fields on surfaces and present
efficient algorithms for locating singularities, separatrices,
and effective design operations in [1].
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For previous methods [1], [2], [15], [18], [19], designing an
N-RoSy field with a single singularity as shown in Figs. 2 and
8 will be very challenging. The method in [1] involves
complex singularity movement and merging, and cannot
guarantee the topology of the field. The method in [18] is
based on harmonic forms, which is efficient, but cannot fully
control the locations of singularities, and it is not clear how to
construct general N-RoSy fields, such as N ¼ 3. Kälberer
et al. [19] require the construction of complex branched
covering, which converts N-RoSy field design to vector field
design on the covering space. Constructing a smooth vector
field with global continuity on the covering space is based on
harmonic forms, thus, it also suffers from the lack of full
control of the singularities. The technique of Fisher et al. [15]
is based on holomorphic 1-forms. The zero points of the 1-
forms are intrinsically determined by the conformal structure
and cannot be fully controlled by the users, either. Ray et al.’s
method [2] is not guaranteed to find the global minimum
with respect to the discrete variables. Our work is funda-
mentally different in that, our method generates fields with
exact locations and indexes of singularities as specified, no
extra singularity will appear; this can be rigorously proved.
Compared with [2], by using flat cone metric, holonomy is
defined on the finite-dimensional fundamental group, while
in their work, holonomy is defined on the infinite-dimen-
sional loop space. Thus, the theoretic argument and
holonomy computation in our setting are greatly simplified.
We further consider a related, but much more difficult
problem of regular remeshing without T-vertices.

2.1 Pen-and-Ink Sketching of Surfaces

Pen-and-ink sketching of surfaces is a nonphotorealistic
style of shape visualization. The efficiency of the visualiza-
tion and the artistic appearance depend on a number of
factors, one of which is the direction of hatches. Girshick et
al. [20] show that 3D shapes are best illustrated if hatches
follow principal curvature directions. However, curvature
estimation on discrete surfaces is a challenging problem.
While there have been several algorithms that are theore-
tically sound and produce high-quality results [16], [21],
[22], [23], most of them still rely on smoothing to reduce the
noise in the curvature estimate. Consequently, these
methods do not provide control over the singularities in
the field. Hertzmann and Zorin [16] propose the concept of
cross fields, which are 4-RoSy fields obtained from the
curvature tensor (a 2-RoSy field) by removing the distinc-
tion between the major and minor principal directions.
They demonstrate that smoothing on the cross field tends to
produce more natural hatch directions than smoothing
directly on the curvature tensor. Their original goal is to
smooth the field, and their method cannot directly be used
to control the singularities, although they also point out the
fundamental need to control the number and location of the
singularities in the field. Zhang et al. [14] address this issue
by providing singularity pair cancelation and movement
operations on the curvature tensor field. However, their
technique cannot handle a 4-RoSy field.

2.2 Texture synthesis

In [7], 2 and 4-symmetry direction fields are used to steer
synthesizing using 2 and 4-symmetry texture samples.

Zelinka and Garland [24] steer their texture generation
method using a direction field defined as the gradient of a
fair Morse function (it has the same singular points as the
function). Based on the study of the Morse complex of smooth
harmonic functions [25], this allows a user-controllable
number and configuration of singularities. The gradient of
the harmonic function is a direction field. The first work on
computer-generated Celtic knot was introduced by Kaplan
and Cohen in [26]. Zhou et al. [27] introduce mesh quilting
method for geometric texture synthesis through local stitch-
ing and deformation. Our method for constructing Celtic
knots on surfaces is a global method without partitioning the
surface and stitching the texture patches.

2.3 Quad-Dominant Remeshing

The problem of quad-dominant remeshing, i.e., construct-
ing a quad-dominant mesh from an input mesh, has been a
well-studied problem in computer graphics. The key
observation is that a nice quad mesh can be generated if
the orientations of the mesh elements follow the principal
curvature directions [28]. This observation has led to a
number of efficient remeshing algorithms that are based on
streamline tracing [28], [29], [30]. Ray et al. [17] note that
better meshes can be generated if the elements are guided
by a 4-RoSy field. They also develop an energy functional
that can be used to generate a periodic global parameter-
ization and perform quad-based remeshing. The connection
between quad-dominant remeshing and 4-Rosy fields has
also inspired Tong et al. [18] to generate quad meshes by
letting the user design a singularity graph that resembles the
behavior of the topological skeleton of a 4-RoSy field. On
the other hand, Dong et al. [31] perform quad remeshing
using spectral analysis, which produces quad meshes that,
in general, do not align with the curvature directions. A
seminal method is introduced in [19], which converts a 4-
RoSy field on a surface to a vector field by using 4-layer
branched covering.

2.4 Metric Design

Kharevych et al. used circle patterns for discrete conformal
mappings in [3]. The Euclidean flat cone metric with user-
prescribed singularities can be obtained by two stages:
computation of per-edge angle to incorporate the input
geometry and solving circle radii with energy minimization.
The edge angles together with computed radii determine
the metric, using circle patterns. Jin et al. used circle
packing to design flat cone metrics in [4], which handles
spherical, Euclidean, and hyperbolic discrete metrics. The
algorithm is the discrete analogy of Ricci flow [32]. A linear
metric scaling method for computing Euclidean flat cone
metric with prescribed curvatures is introduced in [33],
where the cone singularities can automatically be selected
to minimize the distortion. Based on the work by Luo [34],
Springborn et al. [35] improved the accuracy of [33] and
produced precise results by minimizing a convex energy
function, which is a nonlinear method. Circle pattern and
discrete Ricci flow are also nonlinear methods, require a
preprocessing stage, and get an accurate metric; the metric
scaling method is linear and flexible for general meshes but
with less accuracy.
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3 THEORETIC FOUNDATIONS

In this section, we first briefly introduce Riemannian
geometry theories and then generalize them to discrete
settings. Next, we present our major theoretical results. The
detailed proofs can be found in the Appendix.

3.1 Basic Concepts in Riemannian Geometry

In order to quantitatively measure the rotation of a vector
field along a curve and the rotation of curve itself on a surface,
we need to introduce some tools from Riemannian geometry.

Parallel transport on a curved surface plays the central
role. Suppose that � is a curve on the surface S. The
envelope of all the tangent planes along � is a developable
surface ~S. We develop the envelope to the plane so that �
becomes a planar curve. Suppose that v is a tangent vector
at a point p, we translate it to ~v on the plane along the
development of �. This corresponds to the parallel transport
on the surface. The angle between the resulting transported
vector and the initial vector is called the rotational
component of the holonomy along � or simply the
holonomy of �. Holonomy describes the global symmetry
of the surface. Fig. 3 illustrates a parallel transport on a
sphere S, where � is a circle, ~S is a conic surface, and angle �
is the holonomy along �.

As illustrated in Fig. 4, suppose that a vector field v (in
red) is along a path �, connecting p and q. We parallel
transport the tangent vector at the starting point p to the
ending vertex q, this parallel vector field is w in blue. The
rotation � from wðqÞ to vðqÞ is called the absolute rotation of
the vector field v along the path �. The absolute rotation of
the tangent direction of � is equal to its holonomy. The
relative rotation of the vector field v along the path � is the
difference between the absolute rotation of v and the
holonomy of �, which indicates the change of the angle
between v and the tangent vector of � along �. The

compatibility condition for a smooth N-RoSy field on a

surface is that for any loop �, the relative rotation of v along

� is an integer times of 2�
N . Our central task is to make the

absolute rotation of a vector field and the holonomy to

cancel out each other.
Parallel transport and holonomy along loops on curved

surfaces are very complicated, which contribute to the

difficulty of N-RoSy design. For example, as shown in

Fig. 5, if � is the boundary of a surface patch �, then the

holonomy of � equals the total curvature on �,
R

� K, where

K is the Gaussian curvature. Therefore, the parallel

transport is path dependent. If K is zero everywhere,

namely the surface is flat, then parallel transport is path

independent. The surface global symmetry is extremely

easy to analyze. Unfortunately, according to the Gauss-

Bonnet theorem, the total Gaussian curvature of the surface

is a constant 2��ðSÞ, where �ðSÞ is the Euler characteristic

of the surface. If the surface is not of genus one, then its

Riemannian metric cannot be flat everywhere.
Fortunately, we can design a flat cone metric of an

arbitrary surface such that the curvature is zero almost

everywhere except at finite number of cone singularities. Let

g be the induced Euclidean metric tensor onS. Suppose that a

user has selected the position and curvatures of the singula-

rities on a surface, the target curvature is �K, then the target

metric can be deformed by the Hamilton’s surface Ricci flow

[32], dgðtÞdt ¼ ð �K �KgðtÞÞgðtÞ. Fig. 6 demonstrates two different

flat cone metrics of a genus-one surface obtained by using

Ricci flow.

3.2 Discrete Theories

All the aforementioned Riemannian geometric concepts are

defined on smooth surfaces. In the following, we generalize

the major concepts to the discrete settings.
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Fig. 3. Parallel transport and holonomy. � is the holonomy along �.

Fig. 4. Absolute rotation.

Fig. 5. Holonomy versus curvature.

Fig. 6. Flat cone metrics on a genus-one kitten mesh. The first metric

has no cone singularities, the second metric has 16 cone singularities,

i.e., corners of polycube.



Let M be a triangular mesh in IR3. A metric of M is a
configuration of edge lengths such that the triangle inequality
holds on all faces. The vertex curvature is the angle deficit, i.e.,
2�� the total angle around the vertex. A flat cone metric is a
metric such that the curvatures are zero for almost all the
vertices, except at a few ones. The vertices with nonzero
curvatures are called the cone singularities. Note that metric
determines curvatures. Reversely, in the discrete case, given
the curvatures on vertices, we can uniquely determine a
conformal metric (up to a scaling factor) using the methods in
[3], [4], [33], [35]. The main concern to use such methods is
because they can design metrics from prescribed curvatures,
and thus, we can accurately control the positions and indexes
of singularities of the field. Fig. 6 shows two flat cone metrics
for a genus-one kitten model. The mesh is developed onto the
plane by a flat metric without singularities. While the
curvature is determined by the metric, the total curvature of
the surface is determined by the topology of the mesh, which
is equal to 2��ðMÞ, where �ðMÞ is the Euler characteristic.

Let M be a mesh with a flat cone metric and S ¼
fs1; s2; . . . ; sng be the cone singularity set. Let �M denote the
mesh obtained by removing all the cone singularities from
M, �M ¼MnS.

3.2.1 Parallel Transport

Parallel transport is the direct generalization of planar
translation. Discrete parallel transport was introduced in
[36] in the setting of geodesics on discrete surfaces. Let � be
a path consisting of a sequence of consecutive edges on �M,
the sorted vertices of � are fv0; v1; . . . ; vng. Let Ni denote the
one-ring neighborhood of vi (the union of all the faces
adjacent to vi), then the one-ring neighborhood of � is
defined as the union of all Nis: Nð�Þ ¼

Sn
i¼0 Ni.

The development of Nð�Þ refers to the following process:
first, we flatten N0 on the plane and then extend the
flattening to N1 such that the common faces in both N0 and
N1 coincide on the plane. This process is repeated until Nn

is flattened. In this way, we develop Nð�Þ to the plane. We
denote the development map by � : Nð�Þ ! IR2. Note that
the restriction of the development map on each triangle is a
planar rigid motion. Parallel transport on the mesh along � is
defined as the translation on the development of Nð�Þ. See
Fig. 7 for the illustration of parallel transport.

3.2.2 Holonomy

In practice, we are more interested in the loop case, i.e.,
v0 ¼ vn. When parallel transporting a tangent vector at v0

along � to vn, the resulting vector differs from the original

vector by a rotation, which is the holonomy of the loop,

denoted by hð�Þ. Given a vector field v along �, we parallel

transport the vector at the starting point. The vector at the

ending point differs from the transported vector, which is the

absolute rotation of the field along �, denoted by Rvð�Þ.
Two loops �1; �2 sharing a base point p are homotopic, if

one can deform to the other. The concatenation of �1; �2

through p is still a loop, which is the product of them. All

homotopy classes of loops form a group, the so-called

homotopy group �ð �MÞ. Suppose that M has g handles and

n cone singularities. Then, the basis of �ð �MÞ is depicted in

Fig. 9, where each handle has two loops ak; bk, and each

singularity si normally has one loop ci. Note that in Fig. 9,

the loop around the center singularity is not included as a

basis in the homotopy group, as this loop can easily be

generated by the combination of all other marked loops.

Details are explained in [2].
Homotopic loops have the same holonomy if the under-

lying surface has a flat cone metric. In this case, we can

define the holonomy map, h : �ð �MÞ ! SOð2Þ, where SOð2Þ is

the rotation group in the plane. Its image hð�ð �MÞÞ is the

holonomy group of M, denoted by holoð �MÞ.

3.2.3 Compatibility (N-RoSy)

The relative rotation of a vector v along � is defined as the

difference of the absolute rotation of v and the holonomy of

�, Tvð�Þ ¼ Rvð�Þ � hð�Þ. The relative rotation is equivalent

to the turning number defined in [2]. Ray et al. proved that

for a smooth N-RoSy field, the turning number along any

loop must be integer times of 2�
N .
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Fig. 7. Discrete parallel transport and holonomy. Homotopic loops

sharing the base vertex have the same holonomy.
Fig. 8. A vector field on a genus-zero closed surface with a single

singularity with index þ2.

Fig. 9. Homotopy basis for a 3-hole torus with four singularities.



Tvð�Þ ¼ Rvð�Þ � hð�Þ � 0;mod
2�

N
: ð1Þ

Furthermore, the turning numbers on a basis of the
homotopy group �ð �MÞ

fTvða1Þ; Tvðb1Þ; . . . ; TvðagÞ; TvðbgÞ; Tvðc1Þ; . . . ; TvðcnÞg ð2Þ

determine the homotopy class of the N-RoSy field. We
develop our theoretical results based on these fundamental
facts. All the proofs are given in the Appendix.

The following theorems lay down the theoretical
foundation of our metric-driven method, which claims that
the topological properties of a vector field are preserved by
metric deformation.

Theorem 3.1. Suppose that v is a smooth N-RoSy field on a
surface M. gðtÞ is a one-parameter family of Riemannian
metric tensors. Then for any closed loop � on M, the relative
rotation Tvð�Þ on ðM;gðtÞÞ, i.e., M with the metric gðtÞ, is
constant for any t.

Thus, smooth metric deformation does not change the
topology of the field. We can, therefore, choose a special
metric to simplify the computation as much as possible, i.e.,
a flat cone metric.

The simplest N-RoSy field is the parallel field, the
following theory leads us to design our algorithm.

Theorem 3.2. Suppose that M is a surface with a flat cone
metric. A parallel N-RoSy field exists on the surface if and
only if all the holonomic rotation angles of the metric are
integer times of 2�

N .

For genus-zero closed surfaces, the curvature of cone
singularities determines the holonomy.

Corollary 3.3. Suppose that M is a genus-zero closed surface
with finite cone singularities. M has a parallel N-RoSy field if
and only if the curvature for each cone singularity is 2k�

N .

According to this corollary, it is easy to verify the
symmetry of platonic solids. If a platonic solid has N
vertices, then the vertex curvature is 4�

N , therefore, the
rotational homology group is generated by the rotation of
angle 4�

N , an N
2 -RoSy field exists on it. For example, an

octahedron is with six vertices and 3-RoSy; a dodecahedron
is with 20 vertices and 10-RoSy.

The following existence theorem guarantees the existence
of N-RoSy fields on surfaces with arbitrary flat cone metrics.

Theorem 3.4. Suppose that M is a surface with flat cone metric,
then there exists a smooth N-RoSy field.

Suppose that ~M is a branched covering of M (defined in
[19]), then the holonomy group of ~M is a subgroup of that of
M; ~M may have more N-RoSy fields with lower N . For
example, in [19], M has a parallel 4-RoSy field, its 4-layer
branch covering ~M allows a parallel 1-RoSy field, namely a
vector field.

Tessellation. We wish to generalize planar tessellation to
general surfaces. If the symmetry of the metric on the
surface is compatible with the symmetry of the planar
tessellation, then the surface can be remeshed according to
the planar tessellation.

We generalize holonomy to include both translation and
rotation. Fig. 7 shows the concept. Given a loop �, the
starting vertex v1 coincides with the ending vertex vn, we
develop its neighborhood NðrÞ onto the plane, then the
development of N1 and that of Nn differs by a planar rigid
motion, which is defined as the general holonomy along �.
Two loops sharing the common base vertex share the same
general holonomy. Therefore, general holonomy maps the
homotopy group to a subgroup of planar rigid motion Eð2Þ.
We denote the image by Holoð �MÞ, and call it the general
holonomy group of �M.

Suppose that T is a tessellation of the plane IR2, � is a
rigid motion preserving T , �ðT Þ ¼ T . The symmetry group of
T is defined as

GT ¼ f� 2 Eð2Þj�ðT Þ ¼ Tg:

Theorem 3.5. Suppose that M is with a flat cone metric, the
holonomy group of �M is Holoð �MÞ, if Holoð �MÞ is a subgroup
of GT , then T can be defined on M.

4 ALGORITHM

Suppose the user specifies topological and geometric
constraints for the N-RoSy field: topological constraint means
the singularities, including the number, positions, and
indexes; geometric constraint means the directions and
lengths of the fields at some regions on the surface.

For discrete computation on meshes, we assume that the
N-RoSy field is piecewise linear; each vertex is assigned a
representative vector from N possible directions. This is
consistent with singularities since they are naturally speci-
fied at certain vertices. As detailed later in the section, we
construct vector fields on flat metric, where the tangent
vectors are defined intrinsically, and there is no difference to
define the tangent on vertices or on faces. When we pull back
the planar field to the original mesh, we define the tangent
plane at each vertex as the average of the surrounding face
planes, as done before in [28] for smoothing tensor fields.

Our algorithm has two major stages: stage one is to
compute an initial N-RoSy field, which satisfies the
topological constraints, and stage two is to edit the N-RoSy
field, locally rotate, and scale the initial field to satisfy the
geometric constraints.

4.1 Initializing N-RoSy Field

This stage has three steps: computing the metric, computing
the holonomy, and holonomy compensation. For genus-
zero meshes, we only need the first step because the metric
will be compatible with N-RoSy fields automatically
according to Corollary 3.3.

4.1.1 Computing the Flat Cone Metric

The cone singularities are fully determined by the singula-
rities on the desired N-RoSy field. Let v be a cone
singularity, then its curvature and index are closely related
by the formula IndðvÞ ¼ kðvÞ

2� , where IndðvÞ is the index of v.
Note that the Gaussian curvature at vertex v satisfies
Kv ¼ 2��

P
�i, where �i are top angles of 1-ring neighbors

of v. Thus, if the index is less than 1 (i.e., the curvature is
less than 2�), then it is easy to define the curvature of v. For
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vertex with an index greater than or equal to 1, it is more
complicated to find the curvature, since the summation of
the corner angles surrounding the vertex should be less
than or equal to zero. We handle this situation in the
following way. We punch a small hole at the cone
singularity. Suppose that the boundary vertices of the small
hole are fv1; v2; . . . ; vmg. Then the index of the singularity
and the total curvature of the boundary are related by

IndðvÞ ¼
Pm

i¼1 ki
2�

þ 1:

Note that this is a problem all the algorithms will face;
here, we give a simple solution to the problem. Given the
desired curvature, we can compute a flat metric using one
of the conventional methods (e.g., the discrete Ricci flow
method in [4]). Fig. 8 illustrates a vector field constructed
using this method on the Michelangelo’s David head
surface, which is a genus-zero closed surface, with one
singularity of index þ2.

According to Corollary 3.3, the flat cone metrics on a
genus-zero closed mesh satisfy the compatible condition
automatically. Fig. 10 shows one example, both 3-RoSy and
4-RoSy fields on a genus-zero surface are constructed by
parallel transport on the flat cone metric directly.

4.1.2 Computing the Holonomy

For genus-zero closed meshes, if the cone singularity
curvatures satisfy the compatibility condition 1, then the
flat cone metric of the surface satisfies the same condition.
For high genus meshes, the cone singularity curvatures
cannot guarantee the holonomy compatibility. This can be
found in Fig. 2c, where the metric on a genus-two surface
has a single cone singularity with curvature �4�, but the
vector field constructed by parallel transport is not smooth.

Thus, explicit computation (and compensation) of holon-

omy is required, as shown in the following example on a

genus-three surface.
We compute a basis of the homotopy group �ð �MÞ using

the method in [19]. The base loops are shown in Fig. 9. Then

we compute the development of each base loop � to obtain

the holonomy hð�Þ. Refer to Fig. 7 for an example of the

development process. The holonomies of all the base loops

form the generators of the holonomy group. For example,

Fig. 9 shows a genus-three mesh with four cone singula-

rities, which are labeled with different colors. The curva-

tures of the red, orange, and blue singularities are ��,�3�,

and �2�, respectively. The holonomic rotation angles for c1,

c2, c3 are 0, �, and 0 (modulo 2�).
The holonomic rotation angles (with respect to a

modulus of 2�) are as follows:

4.1.3 Holonomy Compensation

There are two methods for holonomy compensation,

rotation compensation and metric compensation. The first

one is to adjust the absolute rotation of the direction field

Rvð�Þ; the second one modifies the metric to change the

holonomy hð�Þ such that the relative rotation is equal to 2k�
N

along arbitrary loops.
Rotation compensation. This method is similar to the

method of Ray et al. [2]. The rotation angle of the field is

represented as a closed 1-form. The key difference is that

their method further rotates an existing smooth field and

changes the topology of the field; our method rotates a

nonsmooth field and makes it smooth, it can also be applied

to change the topology of a nonsmooth field.
The homotopy class of the N-RoSy field is determined by

the relative rotations on the basis of homotopy group in (2).

We first use a conventional method [18] to compute a set of

harmonic 1-form bases !k corresponding to the homotopy

group generator �k. The mesh M is cut open along �k to

obtain a new mesh Mk with two sides of �k denoted by �þk
and ��k , respectively. The harmonic function gk : Mk ! IR

can be computed using

�gk ¼ 0;

with the boundary conditions gkj�þ
k
¼ 1 and gkj��

k
¼ 0. We

transfer the 1-form dgk to M based on the edge correspon-

dence and find a function hk : M ! IR such that

�ðdgk þ dhkÞ ¼ 0:

Then, !k ¼ dgk þ dhk is one of the basis. Rrefer to [18] for the

detailed discussions. ! ¼
P
wk!k is a linear combination of

all the bases, where wks are the weights to determine. To

compute a harmonic 1-form ! on �M such that, for any

homotopy group generator �k, the following condition

holds: for N-RoSy field design,

Tvð½�k�Þ � hð½�k�Þ ¼
Z
�k

! ¼
Z
�k

X
k

wk!k:
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Fig. 10. The Pensatore surface is a genus-zero closed mesh. A 3-RoSy

field is shown in (a), where there are six cone singularities with the

curvatures of 2�
3 . A 4-RoSy field is shown in (b), there are eight cone

singularities with the curvatures of �2 .



Solving a small linear system with wks as unknowns obtains

the desired 1-form. Such a harmonic 1-form exists and is

unique. Conceptually, the tangent field corresponding to the

1-form ! is constructed in the following way. We select a

tangent vectorw0 at the base vertex. Suppose that v is another

vertex, the shortest path on �M from v0 to v is �, then we

parallel transportw0 to v along � to obtainw, then we rotatew

clockwise about the normal by an angle � ¼
R
� !. By this way,

we propagate the tangent vector w0 to cover the whole mesh.
In practice, we use an equivalent fast marching method

to propagate the vector field as follows:

1. Select a tangent vector w0 at v0, put v0 in a queue.
2. If the queue is empty, stop. Otherwise, pop the

head vertex vi of the queue. Go through all the
neighbors of vi. For each neighboring vertex vj,
which hasn’t been accessed, parallel transport wi
from vi to vj, rotate it counterclockwise by angle
!ðvi; vjÞ. Enqueue vj.

3. Repeat step 2 until all the vertices have been
processed.

Fig. 2 illustrates a vector field on a genus-two amphora

model with one singularity, computed using rotation

compensation.
Metric compensation. For designing smooth N-RoSy

fields, automatic rotation compensation is already enough.

For the purpose of remeshing, metric compensation method

will be required. In contrast to rotation compensation, this

approach modifies the flat cone metric to achieve the

desired general holonomy, which satisfies the compatibility

condition in Theorem 3.5.
Conventional algorithms [3], [4], [33], [35] for flat cone

metrics cannot produce metrics satisfying the holonomy

constraint in (1). We observe that the flat cone metric on a

polycube [37] satisfies the compatibility condition in (1) for

4-RoSy fields. The flat metric on a mesh with all faces being

equilateral triangles is compatible with 6-RoSy fields.
The following algorithm computes the desired flat cone

metric for genus-zero surfaces based on the polycube map

method introduced in [38]:

1. First, the user specifies the singularities of the N-
RoSy field for both positions and indexes such that
the curvatures satisfy the holonomy condition in (1)
and are positive. Furthermore, the user specifies the
connectivity of a polyhedron P whose vertices are
the cone singularities and faces are either quad-
rilaterals or triangles.

2. We use the discrete Ricci flow method [4] to
compute a flat cone metric. If fsi; sjg is an edge in
P , we compute the shortest path connecting si; sj
under the flat metric. P is decomposed to segments
by the line segments.

3. Each segment is deformed to a rectangle or a
equilateral triangle by discrete Ricci flow. For
example, if we set the boundary curvature at the
corners to be �

2 and zero everywhere else for a
segment, then the metric obtained from the Ricci
flow makes the segment a rectangle.

4. We assemble the rectangles (equilateral triangles) to
the polycube. By scaling the polycube along x-axis,
y-axis, and z-axis, respectively, we make its holon-
omy compatible to the conditions in Theorem 3.5.

For more details for constructing polycubes (especially
for high genus models), we refer readers to [38].

Fig. 1 illustrates several remeshing results based on the
metric compensation. Figs. 1a and 1b show a 3-RoSy field
and a 4-RoSy field on the Buddha model, respectively. In
Fig. 1c, a flat cone metric deforms the mesh in the shape of an
obelisk, which induces a mixed 4-RoSy and 3-RoSy field on
the mesh. Fig. 1d shows a mixed quadrilateral and triangle
tessellation based on the flat cone metric illustrated in
Fig. 1c. As illustrated, we construct a 12-Rosy field on the
Buddha model with nine singularities. The curvatures are
90 degrees for the bottom 4 singularities, 60 degrees for the
middle 4 cones, and 120 degrees for the apex. On the
pyramid of the obelisk, we show the 3-RoSy field; on the rest
part of the obelisk, we show the 4-RoSy field. Fig. 1e shows a
quad remeshing result corresponding to the field in Fig. 1b.
Note that some cone singularities around the shoulder are
negative, which can be handled by our method consistently.
The Celtic knot in Fig. 1f is constructed based on the quad
remeshing in Fig. 1e.

4.2 N-RoSy Field Editing

Suppose that users add some geometric constraints to the
N-Rosy field, our method can incorporate them easily. We
decompose the constraints as orientation constraints and
length constraints. Suppose the user specifies the directions
of the vectors at special point set ! �M. For each vertex q
on M, assume that the angle between the current angle wðqÞ
and the edited direction given the constraints is  ðqÞ. Let
p 2 ! with user-specified guiding vector, the angle between
wðpÞ and the desired direction is � ðpÞ. For the N-RoSy field
with N > 1, any direction from the multivalued directions
is valid. We normally choose the one closest to wðpÞ to
reduce introduced rotations. Then we compute a harmonic
function using the method described in [25]  : M ! IR
with the boundary condition on �. This leads to the well-
known Laplacian equation with the Dirichlet boundary
conditions. For each point q 2M, the following holds

� ðqÞ ¼
X

<q;r>2M
wqr  ðrÞ �  ðqÞð Þ ¼ 0;

where � is the discrete Laplacian-Beltrami operator and wqr
is the cotangent weights [39]. For each hard constraint at
vertex p, we simply replace � ðpÞ ¼ 0 with the constraint
 ðpÞ ¼ � ðpÞ. For a soft constraint at p that only needs to
satisfy in the least-squares sense, we add � p ¼ � � ðpÞ to the
linear system to form an overdetermined system, where � is
the relative importance of given constraint. We may
compute the least-squares solution to this linear system,
which amounts to minimizing a combination functional of
the Dirichlet energy and given constraints.

After solving the linear system, at each point q 2M, we
rotate wðqÞ by an angle  ðqÞ. The length constraint can be
satisfied using the similar harmonic function method. It is
clear that harmonic interpolation of directions won’t
generate any new singularities. Given the user-defined
length constraints (by default, lengths are positive), the
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harmonic length interpolation will generate a field without
any additional singularities, due to the maximum principle
of harmonic function. Compared with the method of Fisher
et al. [15], we both lead to a least-squares problem, which
can efficiently be solved. While the fundamental difference
is that our method smoothly alters an initially smooth N-
RoSy field, thus, it is guaranteed that no extra singularities
will be introduced; on the contrary, extra singularities may
emerge in their method.

Fig. 11 demonstrates a vector field editing process on the
kitten surface. The red arrows are specified directions and
the vector field is modified to follow these directions. The
computation of N-RoSy field editing just takes a fraction of
second on commodity PCs (cf., Table 1), and thus, can be
performed interactively.

4.3 Handling Open Meshes

Our method can easily handle meshes with open bound-
aries. If the N-RoSy field can be arbitrary at the boundary,
we simply need to compute a flat cone metric of the mesh
and the further processing is the same. To compute the flat
cone metric with Ricci flow, the Gaussian curvature for each
boundary vertex should be prescribed, just as the cone
singularities. The Gaussian curvature at a boundary vertex
v is determined by Kv ¼ ��

P
�i, where �i are top angles of

1-ring neighbors of v. For our purpose, the curvatures at
boundaries and cone singularities may be chosen rather
arbitrarily, as long as the total Gaussian curvature satisfies
Gauss-Bonnet theorem. If the N-RoSy field is desired to be
along the boundaries, we may use the concept of double
covering to easily solve this [40]. We first make a
duplication of the input mesh, but with the orientation of
all the faces inverted, and then glue the duplicated version
together with the input open mesh to form a symmetric
closed mesh. For the newly created mesh, it can be
processed in the usual way, but keeping in mind that each
singularity appears twice on both submeshes simulta-
neously. We use the derived N-RoSy field on the original
half of the mesh as the output. Due to the symmetry, we
may verify that the N-RoSy field should be parallel to the
boundaries. If, on the other hand, the N-RoSy field is
desired to be orthogonal to the boundaries, we may rotate
the field by 90 degrees using Hodge star operator.

In this section, practical algorithms for N-RoSy field
design and remeshing are discussed. To eliminate jumps
around handles or singularities, either rotation compensa-

tion or metric compensation can be used. Neither of these
methods will generate any additional singularities. Rotation
compensation locally rotates the vector field according to a
smooth harmonic function. It’s clear that this process will
not generate excessive singularities (vectors with vanishing
length). For metric compensation, the constructed poly-
cubes just contain the specified singularities. Therefore, our
method is completely free of unwanted additional singula-
rities. For constructing smooth N-RoSy fields, rotation
compensation is generally enough. In this case, the only
user inputs are the positions and indexes of the singula-
rities, all the other steps are completely automatic.
Furthermore, the inputs of singularities can be obtained
from other fields directly, such as the principal direction
fields, etc. Therefore, the system can be fully automatic. If
user interaction is desired, the system allows users to give
more inputs to edit the field. Metric compensation approach
requires slightly more information, but it not only compen-
sates for the rotational component of holonomy but also the
generalized holonomy that satisfies the compatibility con-
dition in Theorem 3.5 and admits regular remeshing.

5 EXPERIMENTAL RESULTS

We implemented our algorithm in Cþþ on an Intel
Core2Duo 2 GHz Laptop with 2 GB memory. We report the
timings for the major steps in Table 1, which include the
computations for the flat metric, rotational compensation,
and user editing. The flat metric computation accounts for
most of the time. Although the Ricci flow method is nonlinear,
using the Newton solver described in [4], the performance
can be greatly improved. For moderately sized models,
sufficiently fast feedback can be given, allowing interactive
changing of singularities. The rotation compensation and
feedback to editing are linear and can be performed at an
interactive rate. Also, if no user editing is involved, the whole
pipeline is fully automatic, after singularities are specified, or
derived from some field (e.g., principal tensor fields).

5.1 Remeshing

In the holonomy compensation step of stage one
(Section 4.1.3), we use the metric compensation method
to adjust the metric to satisfy the tessellation compatibility
condition in Theorem 3.5. Then we develop the mesh to
the plane and tessellate the development. This induces a
desired tessellation.

Fig. 1 demonstrates the results of N-RoSy field on the
Buddha model. Figs. 1a and 1b show a 3-RoSy field and a
4-RoSy field on the Buddha model, respectively. In
Fig. 1c, a flat cone metric deforms the mesh in the shape
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Fig. 11. Vector field editing.

TABLE 1
Running Times for Different Steps of Our Algorithm

F -Number of faces, g-genus, s-number of singularities.



of an obelisk, which induces a mixed 4-RoSy and 3-RoSy
field on the mesh. Fig. 1d shows a mixed quadrilateral
and triangle tessellation based on the flat cone metric.
The Celtic knot in the last frame is constructed based on
the quad remeshing in Fig. 1e.

5.2 Celtic Knot on Surface

Celtic knot refers to a variety of endless knots, which, in
most cases, contain delicate symmetries and entangled
structures. Fig. 12 shows a simple Celtic knot. To the best of
our knowledge, Kaplan and Cohen [26] were the first to
present a technique for computer-generated Celtic design.
Most of their results focused on planar Celtic knot design,
whereas our work emphasizes Celtic knots woven over
surfaces with highly global symmetry. Celtic knot produced
by our method is based on regular remeshing. They are
geometric textures represented as surfaces with tens of
thousands of faces.

The local symmetry and the quality of remeshing of the
surfaces play crucial roles for the knotwork on surfaces.
Based on our remeshed results, those uniform quads and
triangles provide a perfect canvas for Celtic knot design.
Similar to the method in [26], we set control points directly
on surfaces, connecting them using polynomials based on
the knot designing rules. Compared with traditional
geometric texture synthesis approaches, we do not need
shell mapping from planar domains to surfaces. Figs. 1, 13,
and 16 show our Celtic knot synthesis results on several
surfaces. The knotwork has complicated structures and rich
symmetries. In the last example, Celtic knots are woven
with colored threads only over Bimba’s body due to the
aesthetic concern, mimicking the dressed sweater.

5.3 Pen-and-Ink Sketching of Surfaces

Pen-and-ink sketching of surfaces is a nonphotorealistic
style of shape visualization. In this work, we follow

Hertzmann and Zorin [16] by treating hatch directions as

a 4-RoSy field.
Our method neither requires the user to input an initial

field, nor generates excess singularities except those

specified by the user. It enables the user to fully control

the number, positions, and the indexes of singularities, and

edit the field interactively. These merits make our system

rather desirable for NPR applications.
For example, we perform the pen-and-ink sketching on

the Venus model in Fig. 14 and Bimba model in Fig. 15. The

left columns show the 4-RoSy fields with user-specified

singularities, six for Bimba and five for Venus. Comparing

with the algorithm in [1], our method reduces the number

of singularities by one order of magnitude and locates them

at the natural positions. This greatly reduces the visual

artifacts and simplifies the designing process. The editing

process improves the hatching quality on the Bimba model

shown in Fig. 15.

LAI ET AL.: METRIC-DRIVEN ROSY FIELD DESIGN AND REMESHING 105

Fig. 12. A planar Celtic knot.

Fig. 13. Two woven Celtic knot designs on the Moai surface, which have

different global symmetries.

Fig. 14. Pen-and-ink sketching of venus model.

Fig. 15. Pen-and-ink sketching of Bimba before (a) and after editing (b).

The hatch directions follow the natural directions better (e.g., neck, arm).



6 CONCLUSIONS

This work introduces rigorous and practical algorithms for
automatic N-RoSy field design on arbitrary surfaces with
prescribed topologies. The user has full control of the
number, positions, and indexes of the singularities (as long
as necessary global constraints are satisfied), as well as the
turning numbers of the loops.

We have also proved the compatibility condition
between the metric and N-RoSy fields (and regular
tessellation). Based on the theoretical findings, we turn the
problem of N-RoSy field design to a metric design problem
with constrained holonomy. By changing the metric of the
surface, we enforce the global symmetry of the surface to be
compatible with the local symmetry of the N-RoSy field. By
using the flat cone metric, we greatly reduce the complexity
of the design process. We also generalize the method for
tessellation and mixed N-RoSy field design.

We applied our algorithm for NPR rendering, remesh-
ing, and geometric texture synthesis. We develop a global
approach to design Celtic knot on surfaces.

Some limitations still exist in our approach. The major
limitation is that our method is based on Ricci flow to
compute flat cone metrics with specified singularities. This
method is nonlinear, and compared with linear methods
(e.g., based on 1-forms), this method is relatively slower.
Using Newton solver speeds up the computation, but is still
slower than linear methods. For applications that require
larger model or faster feedback, we may explore parallel
multigrid solvers to further improve the performance.

Metric design is a very general approach and we believe
that it has potential of being applied for many other
graphics tasks, such as parameterizations, mesh editing,
and efficient rendering, etc. Our work demonstrates the
effectiveness of using flat cone metrics to produce high-
quality N-RoSy fields. We also conjecture that N-RoSy fields
can be utilized to produce a special flat cone metric. In the
future, we will explore further in these directions.

APPENDIX

Theorem 3.1. Suppose that v is a smooth N-RoSy field on a

surface M with an initial metric gð0Þ. gðtÞ is a one-parameter

family of Riemannian metric tensors. Then, for any closed loop

� on M, the relative rotation Tvð�Þ on ðM;gðtÞÞ is a constant

for any t.

Proof. The Levi-Civita connections are continuously deter-

mined by gðtÞ, therefore, the parallel transport is con-

tinuously determined by gðtÞ. The absolute rotation of v

along �, Rvð�Þ is a continuous function of t and so is the

holonomic rotation of �, hð�Þ. We have that the relative

rotationTvð�Þ isacontinuousfunction. Becausev is smooth

on ðM;gð0ÞÞ, therefore, N2� Tvð�Þjt¼0 is an integer. Because it

is also continuous, therefore, it must be a constant for all t.

Since � is chosen arbitrarily, the homotopy type of v, the

indexes of the singularities are preserved during the

continuous metric deformation gðtÞ. tu
Theorem 3.2. Suppose that M is a surface with a flat cone

metric. A parallel N-RoSy field exists on the surface if and
only if all the holonomic rotation angles of the metric are
integer times of 2�

N .

Proof. If the holonomic rotations of the flat cone metric are 2k�
N ,

then parallel transporting an N-RoSy at the base point
results in a field v,Rvð�Þ ¼ 0 for any loop �. Consequently
the compatibility is satisfied and the field is smooth.
Reversely, if there exists a smooth parallel N-RoSy field v,
then Rvð�Þ is zero for any loop �. Therefore, hð�Þmust be
integer times of 2�

N . tu
Corollary 3.3. Suppose that M is a genus-zero closed surface

with a finite number of cone singularities. M has a parallel
N-RoSy field if and only if the curvature for each cone
singularity is 2k�

N .

Proof. Let � be a loop, which is the boundary of a region
� on the surface. Suppose that there are m cone
singularities fs1; s2; . . . ; smg inside �. According to
Gauss-Bonnet theorem, the holonomic rotation angle
of � equals the total curvature of �; hð�Þ ¼

Pm
i¼1 ki,

where ki is the curvature of si. Let �i be a loop
surrounding si without enclosing any other singula-
rities, then f�i; i ¼ 1; 2; . . . ;m� 1g is a set of generators
of �ð �MÞ. M has a smooth parallel N-RoSy field if and
only if all hð�iÞs are 2k�

N . tu
Theorem 3.4. Suppose that M is a surface with flat cone metric,

then there exists a smooth N-RoSy field.

Proof. There exists a unique harmonic 1-form ! such thatR
� ! ¼ hð�Þ for any loop � on �M. We parallel transport

an N-RoSy from the base point and rotate it during the
transportation by an angle

R
� !, where � is any path

from the base to the current point. The resulting field
is smooth. tu
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Fig. 16. Celtic knot designed surfaces.



Theorem 3.5. Suppose that M is with a flat cone metric, the
holonomy group of �M is Hð �MÞ, if Hð �MÞ is a subgroup of GT ,
then T can be defined on M.

Proof. Let ~M be the universal covering space of �M. We
equip ~M with the flat cone metric and immerse ~M onto
the plane IR2. Then the deck transformation group is a
subgroup of the holonomy group Hð �MÞ. If T is a
tessellation on IR2, it is invariant under the action of G.
Hð �MÞ is a subgroup of G, so is the deck transformation
group. Therefore, T is invariant under all the deck
transformations of ~M and so T can be defined on �M. tu

For a mesh with a flat cone metric, homotopic loops have
the same holonomy. It can be further proved that homologic
loops have the same holonomy. But only homotopy loops
have the same generalized holonomy. For the sake of
simplicity, we don’t introduce the concept of homology.
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formal Mappings via Circle Patterns,” ACM Trans. Graphics,
vol. 25, no. 2, pp. 412-438, 2006.

[4] M. Jin, J. Kim, F. Luo, and X. Gu, “Discrete Surface Ricci Flow:
Theories and Applications,” Math. of Surfaces XII, pp. 209-232,
Springer, 2007.

[5] E. Praun, A. Finkelstein, and H. Hoppe, “Lapped Textures,” Proc.
ACM SIGGRAPH, pp. 465-470, Aug. 2000.

[6] G. Turk, “Texture Synthesis on Surfaces,” Proc. ACM SIGGRAPH,
pp. 347-354, 2001.

[7] L.Y. Wei and M. Levoy, “Texture Synthesis over Arbitrary
Manifold Surfaces,” Proc. ACM SIGGRAPH, pp. 355-360, 2001.

[8] J. Stam, “Flows on Surfaces of Arbitrary Topology,” Proc. ACM
SIGGRAPH, vol. 22, no. 3, pp. 724-731, July 2003.

[9] J.J. van Wijk, “Image Based Flow Visualization,” Proc. ACM
SIGGRAPH, vol. 21, no. 3, pp. 745-754, July 2002.

[10] J.J. van Wijk, “Image Based Flow Visualization for Curved
Surfaces,” Proc. IEEE Visualization Conf., pp. 123-130, Oct. 2003.

[11] H. Theisel, “Designing 2d Vector Fields of Arbitrary Topology,”
Proc. Eurographics Conf., vol. 21, pp. 595-604, 2002.

[12] E. Zhang, K. Mischaikow, and G. Turk, “Vector Field Design on
Surfaces,” ACM Trans. Graphics, vol. 25, no. 4, pp. 1294-1326, 2006.

[13] G. Chen, K. Mischaikow, R.S. Laramee, P. Pilarczyk, and E. Zhang,
“Vector Field Editing and Periodic Orbit Extraction Using Morse
Decomposition,” IEEE Trans. Visualization and Computer Graphics,
vol. 13, no. 4, pp. 769-785, July/Aug. 2007.

[14] E. Zhang, J. Hays, and G. Turk, “Interactive Tensor Field Design
and Visualization on Surfaces,” IEEE Trans. Visualization and
Computer Graphics, vol. 13, no. 1, pp. 94-107, Jan./Feb. 2007.
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“Anisotropic Polygonal Remeshing,” ACM Trans. Graphics, vol. 22,
no. 3, pp. 485-493, July 2003.

[29] M. Marinov and L. Kobbelt, “Direct Anisotropic Quad-Dominant
Remeshing,” Proc. 12th Pacific Conf. Computer Graphics and
Applications, pp. 207-216, 2004.

[30] S. Dong, S. Kircher, and M. Garland, “Harmonic Functions for
Quadrilateral Remeshing of Arbitrary Manifolds,” Computer Aided
Geometric Design (CAGD), no. 5, pp. 392-423, 2005.

[31] S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and J.C. Hart,
“Spectral Surface Quadrangulation,” ACM Trans. Graphics, vol. 25,
no. 3, pp. 1057-1066, 2006.

[32] R.S. Hamilton, “Three-Manifolds with Positive Ricci Curvature,”
J. Differential Geometry, vol. 17, pp. 255-306, 1982.

[33] M. Ben-Chen, C. Gotsman, and G. Bunin, “Conformal Flattening
by Curvature Prescription and Metric Scaling,” Computer Graphics
Forum, vol. 27, no. 2, pp. 449-458, 2008.

[34] F. Luo, “Combinatorial Yamabe Flow on Surfaces,” Comm.
Contemporary Math., vol. 6, pp. 765-780, 2004.
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