
A CYCLE BASIS ALGORITHM

Here we present pseudocode for our tight cycle basis algorithm de-
scribed in Section 4.2 of the main paper. The input is a topological
block T of some hypergraph H and the output is a basis C for the
cycle space of T containing only tight cycles. Let n = |V (T)| and
let m = |E(T)|. The complexity of our tight cycle basis algorithm is
O(B1(T)(n+m)) where B1(T) is the first Betti number. The Euler
characteristic gives us B1(T) = 1+m−n, so the complexity is in fact
O((m−n)(n+m)) = O(m2−n2).

Algorithm 1: BFS Tight Cycle Basis
Input: Topological block T
Output: Tight cycle basis C of T

1 function BFSBASIS(T)
2 Q← initialize queue ; // outer search queue
3 S← empty subgraph ; // visited nodes and traversed edges
4 choose node x0 ∈V (T);
5 enqueue x0→ Q; insert x0→V (S);
6 while |Q|> 0 do // outer BFS loop
7 x← Q.front; Q.pop;
8 for each edge (x,y) ∈ E(T), (x,y) /∈ E(S) do
9 if y ∈V (S) then // cycle detected

10 C = TIGHTCYCLE(S,x,y) ; // call inner BFS
11 add C to homology basis C ;
12 else
13 enqueue y→ Q; insert y→V (S);
14 insert (x,y)→ E(S);
15 return C ;
16 function TIGHTCYCLE(S,x,y)
17 Q← initialize queue ; // inner search queue
18 U ← empty subgraph ; // visited nodes and traversed edges
19 enqueue x→ Q; insert x→V (S);
20 x.parent← null;
21 while |Q|> 0 do // inner BFS loop
22 a← Q.front; Q.pop;
23 for each edge (a,b) ∈ E(S), (a,b) /∈ E(U) do
24 if b = y then // tight cycle found
25 C← new cycle; insert (a,y)→C;
26 p← a.parent;
27 while p 6=null do
28 insert (p,a)→C;
29 a← p; p← p.parent;
30 return C;
31 else
32 enqueue b→ Q; insert b→V (U);
33 b.parent← a;
34 insert (a,b)→ E(U);

B PROOF OF THEOREM 3
Here we prove Theorem 3 from the main paper which we restate below.

Theorem 4. (Theorem 3 from the main paper) A cycle in A(C 4) de-
fined by the sequence F = 〈C1,C2, . . . ,Ck〉 ⊆ C4 for some tight cycle
basis C of T contains a common primal or dual node x ∈ V (GT)
within each of the basis cycles Ci ∈ F iff F corresponds to a forbidden
sub-hypergraph in H.

Proof. ⇐ Since the basis cycles in C are linearly independent, a subset
of minimal basis cycles, all having length 4, can have at most 3 common
elements. Let S denote the set of common elements for each Ci ∈ F
and assume that |S| ≥ 1. We show that for any possible combination of
elements in S, F contains one of the forbidden sub-hypergraphs.

In the case that |S|= 1, the sole element in S is either a primal or dual
node of GT . Without loss of generality, suppose that the sole element

(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

Fig. 10: The forbidden sub-hypergraphs of polygon hypergraph drawings:
(a1) 3-adjacent hyperedge bundle of 2 hyperedges, (a2) 2-adjacent
hyperedge bundle of 3 hyperedges, (b1) strangled vertex cycle variant,
(b2) strangled hyperedge cycle variant, (c1,c2) strangled vertex and
hyperedge star variant. Notice that (a2) is the dual of (a1), (b2) is the
dual of (b1), and (c2) is the dual of (c1). The cycle adjacency graph for
each primal-dual pair is drawn in blue over the corresponding bipartite
graph representation in (a3), (b3), and (c3).

v0 ∈ S is a primal node corresponding to a vertex in the primal hyper-
graph. For F to form a cycle in A(C4), it must be that each consecutive
pair of basis cycles Ci,Ci+1 ∈ F share an edge (v0,ei) in GT where
each ei ∈V (GT) is a dual node. Then each cycle Ci ∈ F must contain
elements 〈ei−1,v0,ei,vi〉 where vi ∈V (GT) is a primal node not equal
to v0. It follows that the sequence 〈v1,e1,v2,e2, . . . ,vk,ek,v1〉 defines
a cycle in T . Since this sequence only contains hypergraph elements
that are incident and adjacent to the primal vertex v0, v0 matches the
definition of the cycle variant of a strangled vertex (Figure 10 (b1,b3)).
Similarly, if the sole element in e0 ∈ S is a dual node of GT , corre-
sponding to a hyperedge in the primal hypergraph, we can show that
e0 matches the definition of the cycle variant of a strangled hyperedge
(Figure 10 (b2,b3)).

Now consider the case where S contains exactly one primal node
v0 ∈V (GT) and one dual node e0 ∈V (GT). For F to form a cycle in
A(C4), it must be that |F |= k ≥ 3 since two cycles Ci,C j ∈ F sharing
the edge (v0,e0) in GT corresponds to a single edge in A(C4) which
is not a cycle. Then each basis cycle Ci ∈ F must also contain primal
and dual nodes vi,ei ∈ E(GT) where vi and ei are incident to each
other, vi is incident to e0, and ei is incident to v0. It follows that the set
{e0,v1,e1, . . . ,vk,ek} induces a star sub-hypergraph in T where e0 is
the central element and each sequence 〈e0,vi,ei〉 for i≥ 1≤ k, k ≥ 3,
defines a point of the star. Similarly, the set {v0,e1,v1, . . . ,ek,vk}
induces a star sub-hypergraph centered on v0 where each sequence
〈v0,ei,vi〉 defines a point of the star. Since both of these sets only
contain hypergraph elements incident and adjacent to the primal vertex
v0 and primal hyperedge e0 respectively, v0 matches the definition of
the star variant of a strangled vertex, and e0 matches the definition of
the star variant of a strangled hyperedge (Figure 10, (c1,c2,c3)).

Finally, consider the case where |S| ≥ 2 and S contains either a pair
of primal nodes or a pair of dual nodes in GT . Without loss of generality,
suppose that S contains a pair of primal nodes v0,v1 ∈V. Then for F to
form a cycle in A(C4), each consecutive pair of basis cycles Ci,Ci+1 ∈F
must share a dual node ei ∈ V (GT) as well as edges (v0,ei),(v1,ei).
This means that each pair of consecutive basis cycles is connected by
two edges in A(C4), and each sub-sequence 〈Ci,Ci+1〉 is also a cycle

(a) Primal hypergraph with hyperedge simplifications applied (b) Dual hypergraph with vertex simplifications applied

(c) Primal hypergraph with vertex simplifications applied (d) Dual hypergraph with hyperedge simplifications applied

Fig. 11: Screen captures from the interactive tool presented in Zhou et al. [38] with both the primal and dual hypergraphs of the museum interactions
dataset from [15]. Inside each screen capture, the input hypergraph and graph representation are shown on the top row of visualizations, the
persistence barcode with simplification threshold applied on the left, and the simplified hypergraph and graph representation on the bottom row of
visualizations.

in A(C4). Considering only one of these sub-sequences, we have Ci =
〈v0,ei,v1,eα 〉 and Ci+1 = 〈v0,ei,v1,eβ 〉 where eα ,eβ ∈ E are distinct.
Then ei,eα ,eβ are all adjacent hyperedges with two common elements
v0,v1, matching the definition for a 2-adjacent bundle of 3 hyperedges.
We can further show that the original sequence F contains elements
matching the definition of a 2-adjacent bundle of k+1 hyperedges. If
S instead contains a pair of hyperedges e0,e1 ∈ E, we can similarly
show that each sub-sequence 〈Ci,Ci+1〉 contains elements matching
the definition of a 3-adjacent bundle of 2 hyperedges and F contains
elements matching the definition of a (k + 1)-adjacent bundle of 2
hyperedges.
⇒ From Figure 10 (a3,b3,c3), it is straightforward to verify that

we can construct a minimum cycle basis for each of the forbidden
sub-hypergraphs that satisfies the conditions of Theorem 4.

C COMPARISON TO ZHOU et al. [38]

Here we provide a comparison of our structure-aware hypergraph sim-
plification framework to the persistent homology guided simplification
framework of Zhou et al. [38].

Zhou et al. use a line graph or clique expansion graph as the com-
putational representations for the input hypergraph H, applying edge
collapse operations on the chosen graph representation to induce hyper-
edge collapse or vertex collapse operations in H respectively. The line
graph representation has a node set corresponding to the hyperedges
of H with edges representing non-zero intersection between the vertex
sets of the corresponding pair of hyperedges. These edges are weighted
using the reciprocal of either the size of the intersection between the
pair of hyperedges, or the Jaccard index between their vertex sets. The
clique expansion graph representation has a node set corresponding
to the vertices of H with edges representing containment of the pair
of corresponding vertices in at least one common hyperedge. Again,
the edges are weighted using the reciprocal of either the number of
common hyperedges or the Jaccard index of the containing hyperedge
sets for the corresponding pair of vertices. They then apply persistent

homology to a metric space of the chosen graph representation G to
generate a barcode where each bar represents an edge in a minimum
spanning tree (MST) of G. The length of the bars corresponds to the
edge weights. They collapse edges in the MST G if the length of
the corresponding bar in the barcode is less than a user controllable
threshold, thereby inducing hyperedge or vertex simplifications in H.

By using separate graph representations, their approach is not able
to generate simplified results that include both hyperedge and vertex
simplifications simultaneously. Furthermore, the line graph and clique
expansion graph representations are different depending on whether the
primal hypergraph H or dual hypergraph H∗ is used. In fact, the line
graph of H is equivalent to the clique expansion graph of H∗ and vice
versa. By using the bipartite graph as our computational representation
of H, which treats vertices and hyperedges in the same way, we natu-
rally include hyperedge and vertex simplifications in a single unified
framework. As discussed in our main paper, the bipartite graph repre-
sentation G(H) is equivalent to G(H∗) and can be regarded as the same
graph. Thus, our approach treats the primal and dual hypergraphs with
equal importance while Zhou et al. [38] may introduce inconsistency
depending on the input and which graph representation is chosen.

Figure 11 shows the museum interactions hypergraph, from Sec-
tion 7 of the main paper obtained from the dataset of Isella et al. [15],
loaded into the interactive tool presented by Zhou et al. [38]. We
accessed the tool from their GitHub repository at https://github.
com/tdavislab/Hypergraph-Vis/tree/master. We tested their
simplification method using both the hyperedge and vertex simpli-
fication options applied to both the primal hypergraph H and dual
hypergraph H∗ of the original dataset, visualizing the results in the
default Euler diagram style. We adjusted the simplification threshold
in all four cases to find the smallest value that would produce a Zykov
planar hypergraph, i.e., a hypergraph whose bipartite representation is
a planar graph. We note that there are no additional layout options for
the Euler diagram visualizations other than the default output of their
system. This makes it difficult to observe any structures in the data, like

https://github.com/tdavislab/Hypergraph-Vis/tree/master
https://github.com/tdavislab/Hypergraph-Vis/tree/master

(a) Input hypergraph primal and dual
(157 total elements)

(b) Our simplification primal and dual
(156 total elements)

(c) Zhou et al. hyperedge simplification in primal and vertex simplification in dual
(52 total elements)

(d) Zhou et al. vertex simplification in primal and hyperedge simplification in dual
(50 total elements)

Fig. 12: A comparison of simplification results from Zhou et al. [38] and ours for the museum interactions dataset from [15]. Each sub-figure includes
the primal and dual hypergraphs with polygons colored according to hyperedge cardinality on the left and right. In the middle, the same pair of
hypergraph paths are highlighted in the primal hypergraph of each sub-figure indicated by orange and blue lines. These paths are disjoint in the
original hypergraph (a) except for the start and end points.

cycles, bridges, and branches unless the layout is manually adjusted.
However, it is convenient that the input hypergraph and simplified result
are displayed next to each other.

Since the line graph representation of H is equivalent to the clique
expansion graph of H∗ and vice versa, the vertex simplified result
in Figure 11 (b) is the dual hypergraph of the hyperedge simplified
result in (a), and the hyperedge simplified result in (d) is the dual
hypergraph of the vertex simplified result in (c). This is also indicated
by the fact that the barcode of (a) matches the barcode of (b) and the
barcode of (c) matches the barcode of (d). However, since the primal
and dual simplifications can only be performed separately, it is not
possible to coordinate the layouts of the results, which could lead to
different interpretations of the data and its structural features depending
on which is used. More specifically, the upper left sub-windows in
Figure 11 (a) and (b) provide seemingly unrelated input visualizations,
even though one is based on the primal hypergraph and the other on the
dual hypergraph of the same data. Furthermore, between Figure 11 (a)
and (c), even though the visualization of the input hypergraph (upper
left sub-windows) is the same, the simplified results (the sub-windows
below the input visualizations) are different and seemingly unrelated.
This is due to the different types of simplification operations that are
used: (a) hyperedge simplification based on the clique expansion graph
representation, and (c) vertex simplification based on the line graph
representation. In contrast, we use the bipartite graph representation to
handle the primal hypergraph and its dual in a consistent fashion.

We also compare their simplifications to ours using the polygon
visualization metaphor. We exported the simplified hypergraphs from
Zhou et al.’s tool and imported them into our polygon visualiza-
tion tool which is available at https://github.com/tdavislab/
Hypergraph-Vis/tree/master. Figure 12 compares these visual-
izations of the original museum interactions hypergraph (a), our sim-
plified result from the main paper Figure 9 (b), the hyperedge simpli-
fication of the primal hypergraph from Zhou et al’s. tool [38] paired
with their vertex simplification of the dual hypergraph (c), and the
vertex simplification of the primal hypergraph from Zhou et al’s. tool
(d) paired with their hyperedge simplification of the dual hypergraph,
all using the polygon visualization metaphor. The dual hypergraph
visualizations in (a) and (b) are coordinated with the primal visual-

izations such that corresponding primal and dual elements appear in
approximately the same locations. Since they are generated separately,
the dual visualizations in (c) and (d) are not coordinated with the primal
visualizations, resulting in visualizations that may look unrelated. We
observe that both the hyperedge and vertex simplification methods of
Zhou et al. are effective in reducing the size of the data while keeping
some of the original features, but much of the data is simplified away
to reach a result that is Zykov planar, keeping only 50–52 elements
compared to the original 157. Our result, on the other hand, keeps 156
elements, retaining most of the original information and also preserving
the path structures indicated by the orange and blue highlights in the
middle visualization of each sub-figure. These highlights represent a
pair of paths that are disjoint in the original hypergraph Figure 12 (a)
except at the starting and ending vertices. In (b), we can clearly see
that these paths are still distinct. In (c) however, the paths intersect
through a common super-hyperedge, and in (d), they intersect through
a common super-vertex. Additionally, the hyperedge and vertex simpli-
fication methods alter the paths in different ways as we can see with the
orange path in (d) which is significantly shorter than the orange path
in (c). For a visualization application that requires identifying disjoint
paths, such as identifying transmission vectors of an infectious disease,
we argue that our simplification provides a benefit over Zhou et al’s. .

A more thorough comparison of Zhou et al’s. [38] with ours is
challenging because of the difference in simplification goals. We aim
to reduce clutter by reducing unavoidable overlaps while preserving
structural information. Zhou et al. aim to reduce visual clutter by
reaching a compact representation that can be used for analysis. Both
approaches have applications for which they may be more appropriate.
Additionally, we cannot directly compare results based on the number
of simplifications applied or the number of elements in the simplified
results because the frameworks have different termination criteria. Ours
is based on the removal of unavoidable overlaps and theirs is based on
a persistence threshold value, i.e., if a set of features have the same
barcode length, they are either all simplified or all not simplified.

D ENLARGED FIGURES

On the following pages, we provide enlarged versions of Figure 8 and
Figure 9 from the main paper.

https://github.com/tdavislab/Hypergraph-Vis/tree/master
https://github.com/tdavislab/Hypergraph-Vis/tree/master

(a) Input hypergraph (b) Oliver et al. simplified scale

(c) Our simplified scale

Fig. 13: Enlarged versions of the visualizations in Figure 8 from the main paper. A paper-author hypergraph network with 786 vertices and 318
hyperedges, (a) is simplified using the priority guided approach of Oliver et al. [25] (b), and our topological decomposition guided approach (c).
Notice that some of the branches in (b) have been reduced and others have been eliminated entirely. Our hypergraph decomposition extracts
structures ahead of time, allowing us to preserve the skeleton of each branch. In each visualization, the hyperedges are colored according to the
keywords of their papers: blue for the keyword “flow”, green for the keywords “machine learning”, and orange for the keyword “graph”. Additionally,
the vertices are colored according to the geographic location of the affiliated research institution for each author: magenta for institutions based in
the United States, yellow for institutions based in Germany, red for institutions based in China, and gray for institutions based elsewhere.

(a) Input hypergraph (b) Simplified hypergraph with cycle edge cuts

Fig. 14: Enlarged versions of the visualizations in Figure 9 from the main paper. A hypergraph representing face-to-face interactions between
museum visitors [15] is visualized before, (a), and after simplifying the topological blocks, (b). Notice the numerous triangles and digons in (a) that
overlap despite being non-adjacent. On the right, six cycles have been cut to make the hypergraph planar. The deleted incidence relationships
between vertices and hyperedges are represented by dashed annotation lines along the boundary of the visualization. In the upper right corners, we
highlight the same two paths for each layout from a vertex near the top to a vertex near the bottom.

