
Structure-Aware Simplification for Hypergraph Visualization

Peter Oliver , Eugene Zhang , Senior Member, IEEE, and Yue Zhang , Member, IEEE

(a) Input hypergraph (b) Oliver et al. [25] simplified scale (c) Our simplified scale

Fig. 1: A hypergraph network representing friendships between 92 high school students in Marseilles [23] is visualized using the
polygon visualization metaphor. Visual clutter caused by overlapping polygons in (a) makes it difficult to identify cycle structures such
as the one highlighted in blue. The simplification method of Oliver et al. [25] shown in (b) reduces the polygon overlaps, but collapses
the highlighted cycle into a single hypergraph vertex. This failure to preserve the cycle makes the interpretation of this intermediate
scale less reliable. Our new structure-aware simplification method shown in (c) efficiently reduces polygon overlaps while preserving
structures in the data such as the cycle. Our method enables multi-scale hypergraph visualizations where the simplified scales can be
used to more easily identify meaningful structures in the data.

Abstract— Hypergraphs provide a natural way to represent polyadic relationships in network data. For large hypergraphs, it is often
difficult to visually detect structures within the data. Recently, a scalable polygon-based visualization approach was developed allowing
hypergraphs with thousands of hyperedges to be simplified and examined at different levels of detail. However, this approach is not
guaranteed to eliminate all of the visual clutter caused by unavoidable overlaps. Furthermore, meaningful structures can be lost
at simplified scales, making their interpretation unreliable. In this paper, we define hypergraph structures using the bipartite graph
representation, allowing us to decompose the hypergraph into a union of structures including topological blocks, bridges, and branches,
and to identify exactly where unavoidable overlaps must occur. We also introduce a set of topology preserving and topology altering
atomic operations, enabling the preservation of important structures while reducing unavoidable overlaps to improve visual clarity and
interpretability in simplified scales. We demonstrate our approach in several real-world applications.

Index Terms—Hypergraph Visualization, Hypergraph Simplification, Hypergraph Topology, Bipartite Representation

1 INTRODUCTION

Polyadic relationships are omnipresent in network data with appli-
cations ranging from social networks, to paper authorship, and biol-
ogy. Hypergraphs, as extensions to graphs, provide an ideal model
for polyadic relationships where each relationship is represented as a
hyperedge. The incident vertices of the hyperedge represent the entities
in the underlying relationship. Any analysis of polyadic relationship
data requires efficient visualization of the corresponding hypergraphs.

There have been recent advances in hypergraph visualization [3],
with a focus on identifying an appropriate visual metaphor for hyper-

• Peter Oliver is with the School of Electrical Engineering and Computer
Science, Oregon State University. E-mail: oliverpe@oregonstate.edu.

• Eugene Zhang is a Professor with the School of Electrical Engineering and
Computer Science, Oregon State University. E-mail:
zhange@eecs.oregonstate.edu.

• Yue Zhang is an Associate Professor with the School of Electrical
Engineering and Computer Science, Oregon State University. E-mail:
zhangyue@oregonstate.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

edges. Qu et al. [26] propose the use of an N-sided polygon for each
N-ary polyadic relationship in the data. In this polygon visualization
metaphor, the vertices of the polygons coincide with the entities in
the N-ary relationship. In their follow-up research, Qu et al. [27]
develop an optimization framework that generates high-quality polygon
layouts for hypergraphs and their dual hypergraphs, where the roles of
the vertices and hyperedges are switched. However, overlaps between
polygons can make it challenging to differentiate individual polygons
and correctly identify their shared vertices, especially for large datasets.
Figure 1 (a) contains several examples. In addition, their optimization
often becomes trapped at local minima in its objective function for
datasets with more than a few hundred elements, leading to subopti-
mal layouts. To address this, Oliver et al. [25] introduce a layout
optimization framework in which the complexity of a hypergraph is
iteratively reduced through a set of atomic simplification operations.
Once the reduced hypergraph is sufficiently simple, an optimized layout
is generated. From there, a sequence of inverse simplification oper-
ations is executed to gradually bring the complexity back to that of
the original hypergraph. With each inverse operation, the layout is
locally optimized and updated before continuing with the next inverse
operation. This leads to a gain in layout quality and a reduction in the
time required to produce such a layout. However, hypergraphs have
structural features that can be lost at intermediate simplified scales,
limiting their usefulness for multi-scale visualizations where significant
structures should be recognizable in each scale. Figure 1 (b) shows an

https://orcid.org/0009-0002-5090-6057
https://orcid.org/0000-0003-4752-3119
https://orcid.org/0000-0002-8467-2781

intermediate hypergraph scale created using Oliver et al.’s approach.
Notice that the highlighted cycle structure in (a) is no longer present in
(b). This cycle represents separation between friendship groups which
is not easily visible in (a) due to polygon overlaps, and is completely
removed in (b) where the friendship groups and the separation between
them are collapsed into a single vertex. In addition, some visual clutter
can persist in simplified scales, as shown in (b) by the remaining over-
lapping polygons, raising a fundamental question: is the visual clutter
an artifact of the layout algorithm or is it unavoidable?

In this paper, we introduce a structure-aware approach to hypergraph
simplification. We propose a novel decomposition of a hypergraph into
an edge disjoint union of topological blocks, branches, and bridges.
These structures can play an important role in interpreting hypergraph
data. For example, the quantity and size of interweaving cycles in a
social group hypergraph dataset can tell us how close-knit a particular
group is. Alternatively, the presence of cycles in a contact tracing
dataset indicates multiple possible transmission vectors for an infectious
disease, namely, along either side of the cycle. Bridges and branches
in a paper-author dataset can indicate links between research groups
and help identify work that is on the outskirts of a research community.
Our decomposition method also enables exact identification of areas in
the hypergraph where unavoidable overlaps occur, which are a primary
source of visual clutter in polygon visualizations.

At the core of our decomposition and identification of unavoidable
overlaps is the use of bipartite graphs as the foundation of hypergraph
analysis. The bipartite graph representation replaces both the vertices
and hyperedges of the hypergraph with graph nodes, using graph edges
to indicate incidence relationships in the hypergraph. We define a topo-
logical block as a maximal biconnected component in this bipartite
graph. We present an efficient algorithm for computing a cycle basis
for the bipartite graph, leading to a fast implementation of our decom-
position. We also develop new theory showing how the bipartite cycles
can be used to identify unavoidable overlaps in polygon visualizations.
In particular, we define the entanglement index as the ratio between
the first Betti number (number of basis cycles) and the total number
of elements in a topological block. We further show that unavoidable
overlaps occur only in entangled topological blocks which we call
forbidden clusters. Powered by this analysis, we propose a new set of
atomic simplification operations, inspired by the operations from [25],
using the nodes and edges of the bipartite graph representation as the
fundamental units. We include both topology preserving and topology
altering operations. A topology preserving operation does not affect the
number of linearly independent bipartite cycles in the cycle basis, while
a topology altering operation can decrease the number of independent
cycles by one. Our hypergraph decomposition paired with the identified
unavoidable overlaps allows us to determine exactly how and where the
different types of operations should be applied to reduce visual clutter
while preserving the most salient structures in the hypergraph. This
also leads to a more efficient technique for producing planar simpli-
fied hypergraphs compared to [25]. We include three use cases with
real-world datasets and provide our interpretations of the results.

2 PREVIOUS WORK

Here we review recent work in network analysis and visualization that
is most relevant to our paper.

Hypergraph Visualization. Much of the recent work on hy-
pergraph visualization has focused on identifying effective visual
representations of hyperedges using matrices [19, 21, 30, 36], re-
gions [2, 4, 24, 28, 29, 31–34], metro lines [11, 17, 37], and bipartite
graphs [2, 8, 35]. Matrix based methods enable spectral methods for
analysis but do not as easily show structures in the data. Metro line
visualizations can effectively display branching structures but are not
ideal for representing topological structures like cycles. We use a bipar-
tite graph representation for analysis, but for visualization, we adopt
a region based approach of Qu et al. [27]. In their approach, each
hyperedge is represented as a polygon drawn between the correspond-
ing vertices embedded in the plane. By optimizing the positions of the
vertices so that each polygon is as near to regular as possible, they gen-
erate high quality polygon layouts where the cardinality of a hyperedge

(a) Primal hypergraph H (b) Bipartite representation (c) Dual Hypergraph H∗

Fig. 2: The bipartite representations (b) of the primal hypergraph (a) and
dual hypergraph (b) are identical. We use a black dot to represent a node
in the primal hypergraph and a gray diamond to represent a node in the
dual hypergraph.

can be identified through easily recognizable shapes.
In recent years, simplification has been used to reduce clutter and

enhance readability in hypergraph visualizations. Oliver et al. [25]
build on the layout optimization framework of [27], developing a multi-
scale optimization method that is more effective in reducing polygon
overlaps in the layout. Recognizing the potential of using simplified
scales to study hypergraph structures, we build on the simplification
scheme of [25], augmenting their statistic based approach with a new
structure-aware implementation that can precisely identify sources of
unavoidable overlap. Zhou et al. [38] apply persistent homology tech-
niques to compute a barcode for a chosen graph representation of the
input hypergraph, which is used to guide merging operations. Their aim
is to reduce the size of the data to create more compact and readable
visualizations. In contrast, Oliver et al. [25] apply simplifications
directly to the hypergraph vertices and hyperedges, guided by a cus-
tomizable priority measure. They aim to provide scalable visualization
techniques for very large datasets. Neither approach directly addresses
visual clutter caused by unavoidable overlaps. To achieve simultaneous
vertex and hyperedge simplification, we apply simplifications to the
bipartite graph representation.

Hypergraph Structures. Recent work from Fan et al. [10] fo-
cuses on cycles in graph data with the aim to improve quantification
on important nodes. However, such analysis is not focused on bipartite
graphs which correspond to hypergraphs. Considerable effort has been
made to describe connectedness in various mathematical representa-
tions. In addition to prominent work by Erdös [9] and Berge [5] on
hypergraph combinatorics, Aksoy et al. [1] introduce concepts of
high-order s-walks and s-paths which have concepts of both length and
width. Such structures are powerful tools to analyze the connectivity
of a hypergraph. To our knowledge, we are the first to explore the
decomposition of a hypergraph into its constituent structures to guide
structure-aware simplification and identify unavoidable visual clutter.

3 BACKGROUND

A hypergraph H = 〈V,E〉 on a finite set of vertices V is defined by
a family of hyperedges E. A hyperedge e ∈ E contains a non-empty
subset of vertices Ve ⊆ V which are incident to e and adjacent to each
other. Similarly, a vertex v ∈ V is contained by a subset of hyperedges
Ev ⊆ E which are incident to v and adjacent to each other. Following
Oliver et al. [25], let Ee denote the set of hyperedges adjacent to e and
Vv the set of vertices adjacent to v. Consistent with [27], we define the
degree of a vertex v as deg(v) = |Ev| and the cardinality of a hyperedge
e as card(e) = |Ve|.

The dual hypergraph H∗ = 〈V∗,E∗〉 of H is obtained by switching
the roles of vertices and hyperedges in H (Figure 2 (c)). We refer to
the original hypergraph H as the primal hypergraph. More precisely,
each element v ∈ V corresponds to a unique element v∗ ∈ E∗ and each
element e ∈ E corresponds to a unique element e∗ ∈ V∗. The incidence
and adjacency relationships of corresponding elements in the primal
and dual hypergraphs are identical. This means that the primal and
dual hypergraphs share combinatorial features and properties such as
linearity and planarity [5, 25].

Fig. 3: The three simple cycles C1,C2,C3 of a bipartite graph (center) are
highlighted by the green, orange, and purple dotted lines. The same
cycles are highlighted in the matching primal hypergraph (left) and dual
hypergraph (right). Cycles C1 and C2 can be combined to form C3.

For H= 〈V,E〉, the bipartite representation (also called the König
representation) G(H) = (X ∪Y,D) is a bipartite graph with nodes x∈ X
for every vertex in V and nodes y∈Y for every hyperedge in E (Figure 2
(b)). There is a one-to-one correspondence between V and X , so
without ambiguity, we write X = V. Similarly, there is a one-to-one
correspondence between Y and E, i.e. every node in Y corresponds
precisely to one hyperedge in H. Again, we write Y = E. Vertices x∈ X
and y∈Y form an edge (x,y)∈D if and only if x is part of the hyperedge
associated with y. We can also define the bipartite representation in
terms of the dual hypergraph H∗, resulting in an equivalent graph G∗.
Thus, we identify G and G∗ as one graph. A node in G that is a vertex
in H we refer to as a primal node and is drawn as a black dot in our
visualizations (Figure 2). A node in G that corresponds to a hyperedge
in H (or equivalently a vertex in the dual hypergraph) is referred to as
dual node and is drawn as a grey diamond. Notice that an edge in D
must link a primal node to a dual node, thus G is bipartite.

Bretto [6] defines a path P in H from u to v, u,v∈V, as an alternating
sequence P = 〈u = x1,e1,x2,e2, . . . ,xn,en,xn+1 = v〉 where

• x1,x2, . . . ,xn ∈V are distinct vertices,
• e1,e2, . . . ,en ∈ E are distinct hyperedges,
• xi,xi+1 ∈ ei for 1≤ i≤ n.

H is connected if every distinct pair of vertices is linked by some path
P. If u = x1 = xn+1 = v, then P is a cycle. Figure 3 outlines three such
cycles in the primal, bipartite, and dual visualizations. This definition
of a hypergraph cycle is consistent with Berge [5], and is analogous to
a simple cycle in a graph where none of the vertices is repeated. We
assume that all graph and hypergraph cycles discussed in the remainder
of the paper are simple.

The simple cycles of the bipartite representation G live within 2-
connected components. Any vertex in G whose removal makes G
disconnected, or increases the number of connected components, is
called an articulation vertex. A connected graph that has no articu-
lation vertices is called 2-connected. A graph can contain multiple
2-connected subgraphs. A maximal connected subgraph in G contain-
ing no articulation vertices is also called a block. A block on more
than two vertices is called a 2-connected (or biconnected) component.
Blocks can consist of an isolated node or a single edge, while the small-
est 2-connected component is a triangle. Cycles cannot exist outside of
a 2-connected component without containing duplicate nodes or edges.

4 TOPOLOGY GUIDED DECOMPOSITION

While past analysis of hypergraphs has focused on local behaviors,
such as the cardinality of a hyperedge or the intersections between
hyperedges, hypergraphs have intricate structures that are global in
nature. For example, cycles involving multiple vertices and hyperedges
can exist, and a pair of cycles can be connected by a single path without
which they would be disconnected. In this section, we define a number
of hypergraph structures and develop a decomposition for hypergraphs
into a union of these features. We also provide an efficient algorithm
to compute the decomposition. The structures lead to a number of
atomic simplification operations, enabling multi-scale representations
of hypergraphs in which important features are preserved at simplified
scales, providing meaningful visual interpretations.

4.1 Topological Blocks, Bridges, and Branches
Notice that a path P in H induces a subgraph in the bipartite representa-
tion which is a graph path between alternating primal and dual nodes in

(a) Block decomposition of G (b) Topological decomposition G (c) Hypergraph structures

Fig. 4: We use our block decomposition (a) to generate a topological
decomposition (b) of the bipartite graph representation for the hypergraph
in Figure 2. In (a), the blue bubbles indicate single edge blocks and the
purple bubbles multi-edge blocks. This leads to a number of extracted
structures in (c) including topological blocks (purple bubbles), bridges
(orange bubbles), and branches (green bubbles).

G. If P is a cycle, the subgraph in G induced by P is also a cycle. The
reverse is also true if we relax the definition of a hypergraph cycle to
allow the starting and ending points to be hyperedges, i.e., the vertices
of a path in G induce hypergraph paths in H and H∗. Thus, we can
identify cycles in H and H∗ using the cycles of G and vice versa (Fig-
ure 3). In this paper, we treat all hypergraphs, and by extension their
bipartite representations, as unweighted. Thus, the weight of any path
in G is simply the length of the path. We use the bipartite path length
to describe the lengths of cycles in the primal and dual hypergraphs as
well, i.e., a hypergraph cycle containing n vertices has an overall length
of 2n since it must also contain n hyperedges. The smallest possible
cycle contains two vertices and two hyperedges, has a length of 4, and
is represented in G as the complete bipartite graph K2,2. We refer to
these as minimal cycles.

We also consider the topology of H in terms of the topology of the
bipartite graph G. Using the language of homology [18], the topology
of G(H) can be measured in terms of its Betti numbers. The zeroth
Betti number, B0, is the number of connected components in G. In our
datasets, all of the hypergraphs are connected, so B0 = 1. On the other
hand, the first Betti number, B1, is the number of independent cycles
in the graph. A cycle can be considered as the combination of two or
more other cycles as shown in Figure 3. In this case, only two of the
three cycles are mutually independent, i.e., B1 = 2.

In fact, there exists a cycle basis C = {C1, . . . ,Cp} where each Ci
(1 ≤ i ≤ p) is an independent cycle in G, and any cycle of G not in
C can be written as a combination of two or more cycles in C . Here,
cycles are combined using the symmetric difference operator. Such a
basis C spans the cycle space of G. Furthermore, C −{Ci} for any
index i no longer spans the cycle space so it is not a cycle basis. There
are a number of choices for a cycle basis of G, however, the number of
cycles p in any basis is given by the first Betti number B1. A common
problem in graph theory is to find a cycle basis such that the sum of all
basis cycle weights is minimum. Such a basis is called a minimal cycle
basis. Horton [14] prove that a minimum cycle basis consists only of
tight cycles. A cycle C is tight if the shortest path between every pair
of nodes in C is a sub-sequence of C. In Fig. 3, C1 and C2 are tight, but
C3 is not tight because it does not contain the shortest path between
the middle primal and dual nodes. Furthermore, each of the pairings
{C1,C2}, {C1,C3}, and {C2,C3} define a cycle basis, but {C1,C2} is
the only minimum cycle basis and it contains tight cycles.

The topological structure of H naturally leads to a decomposition
of both the hypergraph and the bipartite representation G. Let C be a
cycle basis for H. Within C , we consider two basis cycles C1 and C2 to
be connected if they share a common edge in G, i.e., they share at least
one primal node and one dual node. Suppose that C has q connected
components {T1, . . . ,Tq}. We refer to each connected component Ti as
a topological block. Let K = G−C . Then K =

⋃r
i=1 Ki is the disjoint

union of Ki’s where each subgraph Ki is a tree. This is illustrated in
Figure 4 (a) where the purple bubbles indicate extracted topological

(a1) (a2) (a3) (b1) (b2) (b3) (c1) (c2) (c3)

Fig. 5: The forbidden sub-hypergraphs of polygon hypergraph drawings: (a1) 3-adjacent hyperedge bundle of 2 hyperedges, (a2) 2-adjacent
hyperedge bundle of 3 hyperedges, (b1) strangled vertex cycle variant, (b2) strangled hyperedge cycle variant, and (c1, c2) strangled vertex and
hyperedge star variant. Notice that (a2) is the dual of (a1), (b2) is the dual of (b1), and (c2) is the dual of (c1). The cycle adjacency graph for each
primal-dual pair is drawn in blue over the corresponding bipartite graph representation in (a3), (b3), and (c3).

blocks and the blue bubbles indicate the remaining tree subgraphs.
Each Ki can be connected to one or more topological blocks. For
each block Tj connected to Ki, we call the node x j ∈ Tj a root of Ki.
Note that Ki cannot have more than one root in a single topological
block, otherwise, it would define a new cycle. Similarly, a pair of
topological blocks cannot be connected by more than one Ki. If a tree
Ki is connected to only one topological block, having only one root
node, we refer to it as a branch. Figure 4 (b,c) show that tree structures
can be rooted at either primal or dual bipartite nodes. On the other
hand, if Ki is connected to two or more topological blocks, thus having
two or more roots, we refer to it as a bridge. Figure 4 (b,c) shows a
bridge highlighted with an orange bubble that is connected to three
topological blocks, having one primal node root and two dual node
roots. This example also shows that a bridge, like a branch, can contain
leaf nodes in G. We use the roots of a tree Ki to distinguish between
bridges and branches instead of using leaf nodes, although we note that
a branch necessarily contains one or more leaf nodes while a bridge
can have no leaf nodes. Thus, our bipartite graph is an edge-disjoint
union of basis cycles in C which form the topological blocks, the set
of all branches, and the set of all bridges (Figure 4 (b,c)). We refer to
this as the topological decomposition D of the bipartite graph G and
corresponding hypergraph H.

4.2 Decomposition Algorithm

To find the topological decomposition D of the bipartite graph G(H),
we first compute a more granular decomposition D′ based on the blocks
of G. Recall that a block in G is a maximal connected subgraph that
has no articulation nodes. Following the classic algorithm of Hopcroft
and Tarjan [13], we use a depth first search to extract all the blocks of
G. The result is an edge-disjoint decomposition D′ of G into a set of
blocks. Within D′, we have two types of blocks: those consisting of
a single edge in G, and those consisting of multiple edges and nodes
in G. These are shown using blue and purple bubbles respectively
in Figure 4 (a). Notice that the multi-edge blocks are exactly the
topological blocks from our cycle-based decomposition D. That is,
each multi-edge block consists of a subset of connected cycles in a
cycle basis C of G. Furthermore, a single-edge block cannot belong to
any cycle in G since both of its endpoints are articulation nodes in G.
This means that every single-edge block in D′ is contained within some
bridge or branch structure in D. We construct the bridges and branches
of D by finding connected components of the single-edge blocks in D′.

In practice, computing the decomposition D′ and using it to ex-
tract the topological blocks, bridges, and branches of D can be per-
formed within a single depth-first search. We augment the algorithm of
Hopcroft and Tarjan [13] to keep track of the multi-edge blocks in D′ as
well as the connected components of single-edge blocks in D′. For an
arbitrary hypergraph H and its bipartite representation G, our algorithm
produces a topological decomposition in O(|V (G)|+ |E(G)|) time.

As an additional step, we also extract a cycle basis C associated
with the topological decomposition D. Instead of searching all of G for
cycles, we compute a cycle basis for each topological block T ∈ D in-
dividually. Since G is unweighted, we use a pair of nested breadth-first
searches to find a basis of linearly independent tight cycles in T . Our
algorithm is inspired by Gashler and Martinez [12] who use a similar
algorithm to find topological holes in manifold learning datasets. The
first breadth-first search builds up a subgraph S of traversed edges in T .

When the first search discovers a back edge (x,y)∈ E(T) connecting to
a previously visited node y, a new breadth-first search on S is started at
x. Once this second breadth-first search reaches y, the search path from
x to y along with the edge (x,y) is saved as a new basis cycle. Imple-
menting the second search as a breadth-first search ensures that we find
the shortest path in T from x to y apart from the edge (x,y). This means
that every extracted cycle is a tight cycle. We provide pseudocode for
this algorithm in the supplementary material Appendix A.

5 PLANARITY

In a topological decomposition of hypergraph H, the set of bridges and
branches are planar both in the bipartite representation G and in the
polygon representation of H. This is because the bridges and branches
all have a tree structure. Consequently, any non-planarity in G and any
unavoidable overlaps in H must occur within the topological blocks.
Note that unavoidable overlaps are a major source of visual clutter
in hypergraph visualizations. However, a topological block T is not
guaranteed to contain unavoidable overlaps. A set of connected cycles
can have a planar representation if they are not entangled.

Consider one such topological block T , which is connected by defini-
tion and contains a subset of the basis cycles in C . Thus, the Betti num-
bers B0(T) = 1 and B1(T)> 0. Let χ(T) = |V (T)|−|E(T)| denote the
Euler characteristic of T . We also know that χ(T) = B0(T)−B1(T).
Since B0(T) = 1, we have B1(T) = 1+ |E(T)|− |V (T)|. That is, the
number of independent cycles in a topological block is directly related
to the difference in the number of edges and the number of vertices in
the block. The more cycles in the block, the more likely that T is en-
tangled. We thus define the entanglement index of T as η(T) = B1(T)

|V (T)| .
Subgraphs that are trees, such as our bridge and branch structures, do
not contain any cycles and have an entanglement index of zero.

The entanglement index can be used to determine which topolog-
ical blocks likely contain unavoidable overlaps. However, within an
entangled topological block, the unavoidable overlaps may only occur
among a small subset of the cycles in the block. In this section, we
develop theory on the configurations that cause unavoidable overlaps
using the language of our topological decomposition.

5.1 Forbidden Sub-Hypergraphs
A hypergraph H is called Zykov planar if its bipartite representation
G(H) is a planar graph [39]. A graph is planar, i.e. an edge crossing-
free plane embedding can be found, if and only if it does not contain
a subdivision of the complete graph K5 or complete bipartite graph
K3,3 [20]. Zykov’s definition for planarity assumes that hyperedges are
drawn as arbitrary closed regions. However, Oliver et al. [25] find
this definition to be insufficient when drawing hyperedges as convex
polygons, leading to a new definition for planarity within the polygon
visualization metaphor:

Definition 1 (Oliver et al. [25]). A convex polygon representation
is a drawing of a hypergraph in the plane where each hyperedge is rep-
resented as a strictly convex polygon such that the area of intersection
between each pair of polygons is zero.

A hypergraph that admits a convex polygon representation is called
convex polygon planar. Oliver et al. [25] identify four forbidden
sub-hypergraphs that are Zykov planar but lack a convex polygon

(a) Primal hypergraph (b) Bipartite representation (c) Cycle adjacency graph (d) Clusters in primal

Fig. 6: An example of a topological block (a) containing multiple forbidden clusters. In (c), the cycle adjacency graph is superimposed over the
bipartite representation (b), with the minimal basis cycles drawn as blue nodes, and the long basis cycles drawn as green nodes. Removing the
green cycles leaves two 2-connected components of blue nodes, corresponding to the forbidden clusters highlighted in blue in (d).

representation. They define an n-adjacent cluster as the partial hy-
pergraph induced by hyperedges J ⊆ E containing a common set of
vertices X ⊆ V where |X |= n≥ 2. That is, set X is contained within
each hyperedge e ∈ J. To avoid confusion with other cluster defini-
tions, we refer to this as an n-adjacent bundle of hyperedges. The first
forbidden sub-hypergraphs are a 3-adjacent bundle of 2 hyperedges
(Figure 5 (a1)) and a 2-adjacent bundle of 3 hyperedges (Figure 5 (a2)).
These two cases create a primal-dual pair. The next two forbidden sub-
hypergraphs involve a strangled vertex or strangled hyperedge whose
set of incident and adjacent elements have a particular structure. Oliver
et al. [25] describe a variant where a proper subset of the incident and
adjacent elements form a cycle of length n≥ 3 (Figure 5 (b1,b2)). We
introduce another variant where a subset of the incident and adjacent
elements form a star structure around a central element with n ≥ 3
points (Figure 5 (c1,c2)). The strangled vertex and strangled hyperedge
cases also create primal-dual pairs.

Theorem 2 (Oliver et al. [25]). Let H be a Zykov planar hypergraph.
Then H has a convex polygon representation if and only if it does not
contain any of the following as a sub-hypergraph:

(a) A 3-adjacent bundle of 2 hyperedges,
(b) A 2-adjacent bundle of 3 hyperedges,
(c) A strangled vertex,
(d) A strangled hyperedge.

In a polygon drawing of T , we observe that unavoidable overlaps
have two causes: the forbidden sub-hypergraphs, which occur inside
a local neighborhood of mutually incident and adjacent elements, and
subdivisions of the Kuratowski subgraphs K5 and K3,3 in the bipartite
representation which can occur among multiple long cycles. The K5 and
K3,3 subdivisions can also occur inside a small radius of elements, but
such instances often contain a forbidden sub-hypergraph within them.
The forbidden sub-hypergraphs, on the other hand, are local structures
by definition. We use local entanglement and global entanglement to
describe these two categories of unavoidable overlap.

5.2 Forbidden Clusters
Let C be a cycle basis for the topological block T containing only tight
cycles, and let GT be the bipartite representation of T . We define the
cycle adjacency graph A(C) as a graph containing vertices for each
basis cycle C ∈ C and edges (Ci,C j) for every bipartite edge in GT
which the cycles Ci and C j have in common. Note that A(C) is a non-
simple graph since a pair of basis cycles can share multiple bipartite
edges. The cycle adjacency graphs for each forbidden sub-hypergraph
are shown in Figure 5, and an example for a larger topological block
is shown in Figure 6. Oliver et al. [25] observe that the presence of
forbidden sub-hypergraphs is correlated with the size of the intersection
between pairs of adjacent vertices and pairs of adjacent hyperedges. We
notice that every pair of shared vertices between hyperedges e, f ∈ E
corresponds to a minimal cycle. This motivated us to study the subgraph
of the cycle adjacency graph induced by the set of minimal basis cycles
which we denote as A(C4).

Theorem 3. A cycle in A(C 4) defined by the sequence
F = 〈C1,C2, . . . ,Ck〉 ⊆ C4 for some tight cycle basis C of T contains a
common primal or dual node x ∈V (GT) within each of the basis cycles
Ci ∈ F iff F corresponds to a forbidden sub-hypergraph in H.

We prove Theorem 3 in our supplementary material Appendix B.
Theorem 3 implies that forbidden sub-hypergraphs appear as cycles
within A(C4). We define a forbidden cluster inside a topological block
T as a 2-connected component of the elements in A(C4). This is
a stronger notion than our definition of a topological block which
includes any 1-connected component of elements in A(C). Figure 6
shows multiple forbidden clusters extracted from a single topological
block. Under this definition, any forbidden sub-hypergraphs in T must
occur within a forbidden cluster. To extract the forbidden clusters of T ,
we re-use Hopcroft and Tarjan’s algorithm to detect blocks of elements
in A(C4). Each of the non-trivial blocks extracted by this algorithm
constitutes a new forbidden cluster in T .

6 STRUCTURE-AWARE SIMPLIFICATION

To achieve a meaningful multi-scale representation of H, we present
a simplification method using operations specifically designed for the
individual structures in our topological decomposition. We use three
atomic simplifications that operate on the bipartite representation G: a
minimal cycle collapse operation, a cycle edge cut operation, and a leaf
pruning operation. The goal of our simplification is first, to eliminate
non-planarity caused by local and global entanglement, and second,
to reduce the space required by each structure in a polygon layout to
facilitate high quality visualizations. A major difference in Oliver et
al.’s [25] approach is that they initialize candidate operations for every
vertex and hyperedge in H, while we use the topological decomposition
D to generate candidate operations only where they are needed.

Another difference is the explicit use of both topology preserving and
topology altering simplification operations. Oliver et al. use element
removal and merger operations, both of which have the potential to
maintain or alter the topology of H depending on the configuration of
the operand elements. For example, a series of merger operations could
be used to collapse a cycle into a single vertex or hyperedge, reducing
the first Betti number B1 by one. On the other hand, a series of merger
operations on a bridge or branch structure would not affect B1 or the
number of connected components B0. In this paper, we use operations
that are either always topology preserving, or always topology altering,
allowing us to simplify H in a more controlled way.

The topological decomposition D of H is an edge-disjoint union of
topological blocks Ti, bridges K j, and branches Kk. The topological
blocks are defined by a tight cycle basis C = {C1, . . . ,Cp}. While each
of the structures in D can be simplified in parallel, our implementation
simplifies each structure sequentially in order of decreasing entangle-
ment index. As a result, the bridges and branches, which contain no
entanglement are simplified last. Our reasoning is based on experi-
mental observations that non-planarity, which only occurs within the
topological blocks, is the primary source of visual clutter in polygon

visualizations. Of course, the sources of visual clutter can be data-
dependent, and our simplification framework allows for any measure to
be used in place of the entanglement index.

6.1 Topological Blocks

A topological block T can contain both local entanglement in the form
of forbidden sub-hypergraphs, and global entanglement in the form of
Kuratowski subgraphs. We design a pair of topology altering operations
to specifically target and reduce both types of entanglement, thereby
reducing the amount of unavoidable overlaps in T .

The first operation we call a minimal cycle collapse. Let C =
〈u,e,v, f 〉 be a minimal cycle in T where u,v ∈V (G) are primal nodes
and e, f ∈ E(G) are dual nodes. Collapsing C into a single node has
the potential to make G non-bipartite and the hypergraph H invalid.
Instead, we collapse C by merging together either the primal nodes u,v
or the dual nodes e, f . Figure 7 (a) shows an example of a minimal
cycle collapse using primal nodes. This operation alters the topology of
H by removing one or more minimal cycles depending on the direction
of merging, reducing the value of B1 accordingly. If C is collapsed by
merging primal nodes v,u, any of the other minimal cycle Ci containing
u and v are also collapsed and are removed from the cycle basis C . A
longer cycle C j containing u and v, where |C j| > 4, is not at risk of
being collapsed, but its length is reduced by 2.

The purpose of the minimal cycle collapse operation is to elimi-
nate forbidden sub-hypergraphs. To identify candidate collapse opera-
tions, we first extract the set of forbidden clusters from T . If T does
not contain any forbidden clusters, it cannot contain any forbidden
sub-hypergraphs, and we do not need any cycle collapse operations.
Otherwise, for each forbidden cluster in T , we search for tight cycles
within A(C4), reusing our tight cycle basis algorithm from Section 4.2.
Let F = 〈C1, . . . ,Cn〉 be a tight cycle in A(C4). If the minimal cycles
Ci ∈ F share any common bipartite nodes, we save F as a forbidden
sub-hypergraph and classify it according to the number and types of the
shared bipartite nodes, as in the proof of Theorem 3. If F corresponds
to a forbidden sub-hypergraph, we identify a candidate cycle collapse
operation for every Ci ∈ F .

The second operation we call a cycle edge cut. Given a basis cycle Ci,
we cut one of the edges (v,e) ∈ E(Ci) in the bipartite graph, breaking
the cycle Ci, and removing the connection between the corresponding
vertex and hyperedge in H, as shown in Figure 7 (b). This operation also
alters the topology of H by breaking one of the basis cycles, reducing
the value of B1 accordingly. Any basis cycles C j 6=Ci containing the
edge (v,e) are also affected and must be updated by replacing (v,e)
with the new shortest path between v and e.

The purpose of the cycle edge cut operation is to eliminate instances
of K5 and K3,3 occurring between non-minimal basis cycles. Thus, to
identify edge cut candidates, we first construct a modified copy T ′ by
replacing each forbidden cluster in T with a single node, retaining the
external connections of the cluster. We note that T ′ may no longer be
a bipartite graph since the forbidden clusters contain both primal and
dual nodes. For this reason, we only use B′ to search for instances of
K5 and K3,3 and not as a representation of the original hypergraph. We
then build an embedding of T ′ with minimized edge crossings using
a subgraph planarization algorithm from the Open Graph Drawing
Framework [7]. We repeat the edge insertion phase of the planarization
algorithm with ten permutations of the edge insertion order, taking
only the best result with the fewest edge crossings. For each crossing
between edges (vi,ei),(v j,e j) ∈ E(T ′), we identify a candidate cycle
edge cut operation for both (vi,ei) and (v j,e j).

Once all of the candidate minimal cycle collapse and cycle edge
cut operations for topological block T have been identified, we apply
the priority ranking system of Oliver et al. [25] to guide the order of
application for each operation. Their system uses a priority measure
containing multiple terms for per-element statistics including degree
and cardinality, and betweenness centrality, each controlled by tuning
parameters α,β and γ . We add to this an additional term and tuning
parameter δ to evaluate how much each operation alters the topology
of the input hypergraph H.

Let O(x1,x2) be a candidate minimal cycle collapse or cycle edge
cut operation. In the case that O is a cycle collapse operation, let
x1 and x2 represent the pair of primal or dual nodes to be merged in
the collapse of minimal basis cycle C. In the case that O is a cycle
cut operation, let x1 be the primal type node and x2 the dual type
node of the edge (x1,x2) ∈ T to be cut. Let s be the potential change
in the first Betti number B0 caused by the application of O. If O is
a minimal cycle collapse, s is the number of minimal basis cycles
in C containing x1 and x2. if O is a cycle edge cut, s is the total
number of basis cycles in C containing the edge (x1,x2). Now let l
be the average length of all basis cycles containing x1 and x2. We
use δ

(1
s +

1
l
)

as the additional term in our operation priority measure.
This term gives higher priority to operations that eliminate the fewest
cycles, and lower priority to operations that affect long cycles. Our
reasoning for prioritizing operations that eliminate the fewest cycles is
straightforward, we aim to alter the topology of H as little as possible.
We prioritize preserving long basis cycles over short basis cycles for
two reasons. Firstly, the long basis cycles can be considered more
topologically significant while shorter basis cycles can be considered
topological noise. Secondly, the long basis cycles are less likely to
constrict the layout in a polygon drawing of H, and tend to pose fewer
challenges for layout optimization algorithms.

After an operation O has been applied, we update any remaining
candidate operations that may have been affected. If O is a cycle edge
cut operation, we find the other edge in the same crossing identified
by the planarization algorithm and remove it from consideration since
the crossing has been resolved. If O is a cycle collapse operation on
a minimal cycle Ci belonging to some forbidden sub-hypergraph Fi,
we remove from consideration any collapse operations on the other
minimal cycles C j ∈ F , unless C j also belongs to another forbidden
sub-hypergraph Fj that has not yet been simplified. The simplification
of T terminates whenever the entanglement index η(T) drops below
a user defined threshold, or when T is free from both forbidden sub-
hypergraphs and subdivisions of the Kuratowski subgraphs, i.e., when
T has a convex planar representation.

6.2 Bridges and Branches

Let K be a bridge or branch structure with r ≥ 1 roots. Since K does
not contain any entanglement, our primary goal is to facilitate high-
quality polygon layouts by reducing the amount of space required by
the individual hypergraph elements in K. We do this using a leaf node
pruning operation. This is similar to the cycle edge cut operation in
that it breaks the incidence relationship between a vertex vi ∈V(K) and
a hyperedge ei ∈ E(K). However, the leaf pruning operation requires
that either vi or ei correspond to a leaf node in G, and deletes the
leaf node after cutting the bipartite edge (vi,ei). Furthermore, the leaf
pruning operation is topology preserving while the edge cut operation
is topology altering. A leaf node cannot belong to a cycle, so pruning
does not affect B1. Since the leaf node is deleted after the edge is cut,
pruning also has no impact on the number of connected components
B0. An example of pruning a dual leaf node from a bridge is shown
by Figure 7 (c), and an example of pruning a primal leaf node from a
branch structure is shown by Figure 7 (d).

We identify leaf nodes in K using a multi-source breadth-first search
starting from the root nodes of K. For each leaf node discovered, we
identify a new pruning operation candidate. Within the search, we also
keep track of the depth d(x) of each node x with respect to the roots of
K as well as the furthest depth dlow(x) reached by any of the children
of x. A root node r of K has d(r) = 0 and dlow(r) equal to the total
height of the tree while a leaf node x has dlow(x) = d(x).

Once the candidate pruning operations have been identified, we again
use the operation priority ranking system of Oliver et al. to determine
the order of simplifications. For bridge and branch structures we add
the term δ

(
1− dlow(x)

dlow(r)

)
to the operation priority measure where x is the

leaf node in a candidate operation and r is a root node of K. This term
promotes preserving the deepest elements in K as well as the elements
on the connecting paths between r and the deepest elements. We use
this to help preserve the longest paths in each bridge and branch which

Fig. 7: Example simplification operations in the hypergraph from Figures 2 and 4. On the far left and far right, we have the primal hypergraph
before and after simplification. In the middle figures, we have four labeled operations (a), (b), (c), and (d). Operation (a) is a minimal cycle collapse,
operation (b) is a cycle edge cut, operation (c) is a leaf pruning on a bridge, and operation (d) is a leaf pruning on a branch.

Table 1: Comparison of hypergraph simplification methods for reducing forbidden sub-hypergraphs in paper-author datasets. Each dataset is
collected from the DBLP database [22] and consists of a maximal connected subset of publications in the specified year range from the IEEE
journals Transactions on Pattern Analysis and Machine Intelligence (TPAMI) and Transactions on Visualization and Computer Graphics (TVCG).
Each simplification was run until the input no longer contained forbidden sub-hypergraphs. Note that our method is more efficient and uses fewer
operations to achieve this.

Dataset Oliver et al. [25] Ours

description |V| |E| B1 η(H) num ops. initialization (s) simplification (s) num ops. decomp. (s) simplification (s)

TVCG (2015-2017) 1008 429 334 0.234 275 0.305 0.556 83 0.012 0.006
TPAMI (2013-2020) 2054 947 805 0.268 581 1.298 3.902 180 0.045 0.025
TVCG (2013-2020) 3460 1570 1898 0.346 1452 4.190 845.0 429 0.101 0.094

allows them to be easily identified in visualizations of simplified scales.
After pruning a leaf node x, we check whether the parent of y of x

has become a leaf node. If so, we identify a new candidate pruning
operation for y and add it to the priority list of candidate operations.
The simplification terminates once the priority of the next pruning
operation drops below a user-defined threshold.

7 RESULTS

To evaluate the performance of our structure-guided simplification, we
compare it to the priority guided method of Oliver et al. [25]. They
take a statistical approach where iterative atomic simplifications are
guided by a priority measure containing terms for the distributions of
different per-element statistics. In particular, they use terms for the
distribution of vertex degrees and hyperedge cardinalities, vertex and
hyperedge adjacency factors, and betweenness centrality. The influence
of each distribution on the order of simplifications is controlled by
tuning parameters α,β ,γ . The purpose of their adjacency factor term,
which measures the volume of shared vertices between a hyperedge
and all of its adjacent hyperedges, is to guide the simplification toward
eliminating forbidden sub-hypergraphs.

We compare the efficiency of both approaches in Table 1 for the task
of removing forbidden sub-hypergraphs from three different hypergraph
datasets. For each method, we list the number of operations required to
remove all forbidden sub-hypergraphs from the input, the time required
to initialize the operations, or in our case, perform the decomposition,
and the time required to apply the operations and perform any necessary
updates. We observe that both approaches increase in the number
of operations and time required as the datasets increase in size as
well as entanglement index η(H). However, our approach requires
significantly fewer operations and significantly less execution time. The
smaller number of operations can be attributed to our decomposition
and extraction of forbidden clusters which tell us exactly where the
forbidden sub-hypergraphs live. The difference in execution time,
especially for the largest dataset, is even greater. This can be due to
the fact that we simplify each decomposition structure independently,
maintaining separate operation priority queues for the operations on
each structure, while Oliver et al. maintain a much larger global priority
queue that needs to be updated and potentially re-sorted after every
atomic simplification. Finally, we observe that their implementation is
iterative in nature relying on an updating scheme that does not have an
obvious parallel implementation. Ours has the potential to be sped up
even further by simplifying the decomposition structures in parallel.

To evaluate the utility of our decomposition and simplification frame-
work, we apply it to three real-world datasets. For a simplified result
H′, we generate high quality polygon layouts by first applying a force
directed layout to the simplified bipartite graph G′. We align the ver-
tices of H′ with the corresponding primal nodes in the layout of G′,
and draw the hyperedges as polygons between their contained vertices
using the starrization technique of Qu et al. [27]. We then apply the
automatic primal-dual polygon layout optimization system of Qu et al.
to H′. Their optimization uses a multi-term objective function that
promotes polygon regularity and uniform side lengths while avoiding
unnecessary polygon overlaps.

Friendship Dataset. This dataset involves friendships between high
school students in Marseilles, France, recorded in 2013 [23]. The
original dataset is a directed network of reported friendships among the
students. We construct an undirected graph from this dataset including
only edges where both students reported being friends with each other.
We then construct a hypergraph H by creating a hyperedge for every
maximal clique in this graph. A connected subset of H is visualized in
Figure 1 (a). Each hyperedge represents a friendship group where every
student reported being friends with every other student in the group.

The topology can tell something about the different communities
in H. For example, in relation to the zeroth Betti number B0, the
connected components of H suggest larger communities among the
students, possibly representing the individual classes from the dataset
described in [23]. In relation to the first Betti number B1, the cycles
within each topological block can tell us how close-knit a particular
community is. For instance, a community consisting of many small
cycles is more close-knit than a community with only long cycles,
which is in turn more close-knit than a community that has a tree
structure. Thus, being able to identify the existence and length of
cycles in H, related to the entanglement index of its topological blocks,
can be a valuable tool for studying the different communities.

Figure 1 (a) highlights in blue a length 4 cycle of H that occurs
between two forbidden clusters. In (b), a simplified scale H′ is produced
using the method of Oliver et al. [25] with tuning parameters α =
0.0,β = 0.9,γ = 0.4. Notice that the vertices in the highlighted cycle
have been collapsed into a single vertex, combining the forbidden
clusters on either side. This gives the impression of a single close-knit
group of students in H′ where there is actually some separation between
the clusters in H. In (c), the highlighted cycle is preserved after applying
our structure-aware simplification method, and the original forbidden

(a) Input hypergraph (b) Oliver et al. simplified scale (c) Our simplified scale

Fig. 8: A paper-author hypergraph network with 786 vertices and 318 hyperedges, (a) is simplified using the priority guided approach of Oliver et al.
[25] (b), and our topological decomposition guided approach (c). Notice that some of the branches in (b) have been reduced and others have been
eliminated entirely. Our hypergraph decomposition extracts structures ahead of time, allowing us to preserve the skeleton of each branch. In each
visualization, the hyperedges are colored according to the keywords of their papers: blue for the keyword “flow”, green for the keywords “machine
learning”, and orange for the keyword “graph”. Additionally, the vertices are colored according to the geographic location of the affiliated research
institution for each author: magenta for institutions based in the United States, yellow for institutions based in Germany, red for institutions based in
China, and gray for institutions based elsewhere. Enlarged versions of these visualizations are provided in our supplementary material Appendix D.

clusters from H remain visually distinct. Our simplification H′′ was
produced using the same number of simplification operations as H′,
the same values for α,β ,γ , and a value of δ = 1.0 for our new priority
terms. We also observe that the bottom half of H′ is nearly identical to
H, and still contains a few forbidden sub-hypergraphs. Our result H′′ on
the other hand does not contain any forbidden sub-hypergraphs. This
indicates that our decomposition-based approach is a more targeted and
efficient way to reach a planar result.

The result in (c) was reached after applying 25 minimal cycle col-
lapse operations and 1 cycle edge cut operation. This indicates that the
original hypergraph contains more local entanglement in the form of
forbidden clusters than global entanglement in the form of K5 or K3,3
subdivisions. These forbidden clusters can indicate broader friendship
circles than the individual hyperedges would imply. While it would
be possible to cut open these friendship circles to reach planarity, it
seems more appropriate to eliminate the forbidden sub-hypergraphs by
merging some of their elements. This way, some distinction between
individual elements is lost, but the connections within the friendship
circle are emphasized. For example, the overlapping red and orange
polygons on the left side of (a) are merged into a single octagon in (c),
filling in the few missing connections among the friendship circle. On
the other hand, two vertices being merged together can be interpreted
as a pair of students who have very similar friendship connections. This
led to the appearance of monogons (purple teardrop shapes) in (c) which
indicate tighter friendship groups within a merged “super-vertex”.

The cycle cut operation that is applied in (c) removes one friend
from a friendship group. Our simplification system is designed such
that the cut friendship occurs along a non-minimal cycle, and does
not cut open a close-knit forbidden cluster. Furthermore, we prioritize
cutting bipartite edges that occur along the fewest and shortest basis
cycles. Thus, while the immediate connection is broken, the increase in
the shortest path between the removed friend and their friendship group
(along the other side of the broken cycle) is minimized. In this way,
our simplification framework balances maintaining both path length
and path structure by using both collapse and cut operations, but the
acceptability of artifacts from one or the other may depend on the
specific dataset and required analysis tasks.

Paper-Author Dataset. Isenberg et al.’s Vispubdata dataset [16] con-
tains publication information for IEEE Visualization papers from 1990-
2021. Figure 8 (a) shows a connected subset of publications containing
the keywords "flow", "graph", and "machine learning", where each
author is a vertex and each paper a hyperedge. The vertices are colored
according to the geographic location of each author’s affiliated research

institution: magenta for institutions based in the United States, yellow
for institutions based in Germany, red for institutions based in China,
and gray for institutions based elsewhere. The hyperedges are colored
according to the keywords of the corresponding papers: blue for the
keyword “flow”, green for the keywords “machine learning”, and or-
ange for the keyword “graph”. For papers containing multiple of these
keywords, we choose the color based on which keyword appears first.
This dataset contains numerous bridge and branch structures as well as
several large cycles. Entangled topological blocks can be interpreted
as topic areas with a high level of cross-collaboration within or be-
tween research groups. Based on the density of overlapping polygons
in Figure 8 (a), there appears to be much cross-collaboration between
researchers based in Germany on the topic of flow visualization and
cross-collaboration between researchers based in China on machine
learning and graph visualization topics. However, it is difficult to tell
whether there are actually cycles present among the overlapping hyper-
edges or if this is just a result of the layout. Our simplified result in
(c) was produced using only minimal cycle collapse and leaf pruning
operations. In this layout, all of the forbidden sub-hypergraphs are elim-
inated, but we still see a number of cycles and overlapping hyperedges
among the Germany and China based researchers. This confirms our
observations of cross-collaboration among these research communities.
The result in (b) was produced by running the simplification algorithm
of [25] with the same tuning parameters until reaching a scale with the
same number of elements as (c). Their method does not guarantee that
large cycles are preserved, so we cannot reach the same conclusion
based on their visualization result.

We also see in Figure 8 (a) that many of the US based researchers
appear to be connected to the rest of the hypergraph through long
bridge or branch structures. These structures can represent new research
directions or new connections between existing topic areas. The large
bridge and branch structures are even more apparent in (c), but we also
discover many short branches that are hidden among the overlapping
hyperedges in (a) and (b). This indicates that in addition to the cross-
collaboration seen in the topological blocks, there are many papers
connected to the rest of the community through a single author, who
may be an advisor with numerous students, or an influential publication.

In Figure 8 (a), we can see two rabbit ear structures near the top
extending from the central part of the hypergraph. In (c), we find that
the rabbit ear structures include small topological blocks near the ends.
In the context of our topological decomposition, the rabbit ears are the
union of a bridge, topological block, and several small branches. The
small topological blocks in each ear are important since they suggest a
research group with frequent collaborations rather than an individual

(a) Input hypergraph (b) Simplified hypergraph with cycle edge cuts

Fig. 9: A hypergraph representing face-to-face interactions between
museum visitors [15] is visualized before, (a), and after simplifying the
topological blocks, (b). Notice the numerous triangles and digons in (a)
that overlap despite being non-adjacent. On the right, six cycles have
been cut to make the hypergraph planar. The deleted incidence rela-
tionships between vertices and hyperedges are represented by dashed
annotation lines along the boundary of the visualization. In the upper
right corners, we highlight the same two paths for each layout from a
vertex near the top to a vertex near the bottom.

researcher with many one-time collaborators. In fact, the topological
block in the left ear is formed by a group of three researchers, each
pair of whom collaborated on a different topic. In (b), the left ear is
reduced to a short branch with a high degree vertex at the end, giving
the opposite impression of a sole prolific researcher. Furthermore,
because the simplification method of Oliver et al. [25] is iterative,
the cycle in the left ear was collapsed in a previous simplified scale,
changing the structure of the ear from a union of a bridge, cycle, and
branches into a single branch. Thus, the simplified result in (b) involves
both a false negative case in the collapsed cycle, and a false positive in
the new branch structure replacing the original rabbit ear from (a).

The interpretation of minimal cycle collapse operations in this
dataset is similar to the previous friendship dataset: papers or authors
from the same close-knit research group are merged together to elim-
inate visual clutter inside forbidden clusters. The leaf nodes pruned
in (c) could be considered less significant in terms of connectivity in
the research community because they represent authors with only one
paper in the field, possibly student research assistants, or papers with
only one author. Iterative leaf pruning has the potential to eliminate
a branch structure entirely, removing important connecting authors,
which is why we prioritize preserving the deepest elements in each
branch. However, for certain visualization tasks, such as comparing
the number of authors on each paper or the number of publications for
each author, leaf pruning may not be appropriate.

Museum Interactions Dataset. Our final dataset from Isella et al.
[15] tracks social contact patterns between visitors in a museum gallery.
Face-to-face interactions between gallery visitors were measured using
electronic badges. Qu et al. [27] construct hypergraphs from this
data by creating hyperedges between maximal cliques of participants
who spent more than 40 seconds interacting face-to-face with each
other. Figure 9 (a) shows the hypergraph H for gallery visitors on
May 5th, 2009. In (b), we show a planar simplified scale obtained
using our topology altering simplification operations. We include
dashed annotation lines to indicate the incidence relationships from
the original hypergraph that are removed in the simplified scale. Such
annotations in simplified results can provide a visual indication of the

global entanglement present in the original hypergraph. We provide
a comparison of our simplifications here to Zhou et al. [38] in our
supplementary material Appendix C.

We observe that reaching a planar simplified scale H′ in this case
requires 6 edge cycle cut operations and 2 minimal cycle collapse
operations, meaning H contains more subdivisions of the Kuratowski
graphs than forbidden sub-hypergraphs. This indicates that although
there are many overlapping polygons in the layout of H, the average
adjacency between pairs of elements is relatively low. From Figure 9 (a)
we can already see that a majority of the face-to-face interactions only
involve two or three people. The visualization in (b) further shows that
there are not many common participants between separate interactions.
This makes sense in a gallery setting where small groups of visitors
who know each other have only a few interactions outside that group
where they may be listening to a tour guide or speaking with a docent.

In the context of tracking infectious diseases, the disentangled vi-
sualization in (b) gives a clearer view of the possible transmission
vectors between visitors. The close proximity of several vertices in (a)
combined with the overlapping polygons makes it difficult to tell how
many distinct paths connect the uppermost elements in the layout to the
bottommost elements. In the upper right corner of (a), two such distinct
paths are highlighted in red, but there are several places in the layout
where these paths appear to share a vertex. This could be improved by
refining the layout, but the underlying issue remains that some amount
of overlap is unavoidable since the hypergraph does not have a convex
polygon representation. In (b), the vertices and hyperedges are more
spread out, and it is easier to distinguish distinct paths between ele-
ments. In the upper right corner of (b), the same two distinct paths are
highlighted in red, and we can clearly see that they do not intersect
except at the uppermost and bottommost vertices.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we present a novel structure-based hypergraph decompo-
sition using the topology of the bipartite graph representation. Within
our decomposition, the use of the bipartite graph representation also
allows us to identify entangled minimal cycles as the main source of
unavoidable overlaps in hypergraph visualizations. This leads to a new
definition of the entanglement index which is based on the ratio of the
first Betti number and the number of vertices in a topological block. We
use our decomposition to augment the atomic simplification framework
of Oliver et al. [25] making use of structure preserving and structure
altering operations. We also provide efficient algorithms to compute
the decomposition, as well as a framework for implementing structure-
aware simplification. Compared with [25], our work makes the inter-
pretation of simplified hypergraph visualizations more reliable because
the main structures in the data are preserved. An implementation of our
decomposition, simplification, and visualization tools are available on
GitHub: https://github.com/peterdanieloliver/HGPolyVis.

The goal of our work is to provide the theoretical groundwork for
structure-based hypergraph simplification upon which future works can
build. A thorough evaluation is needed to fully explore the potential
visualization benefits, such as identifying disjoint paths in simplified
hypergraphs. We consider our evaluations preliminary and plan to
conduct additional user studies as future work.

We will collaborate with domain scientists in future work to assess
the usefulness of our approaches and explore possible improvements
for application dependent visualization problems. We also plan to more
rigorously investigate the use of glyphs and annotations for commu-
nicating artifacts produced by our simplifications. While our work
identifies entangled cycles as the source of unavoidable overlaps in
polygon visualizations, requiring the polygons to be near-regular can
also cause overlaps in the bridge and branch structures. We plan to in-
vestigate the use of hyperbolic spaces to address this issue. We also plan
to explore structure-based hierarchical layout methods to make polygon
visualization of hypergraphs with thousands to tens of thousands of
hyperedges more tractable. Finally, we plan to study extensions of our
work to time-varying hypergraphs as well as AR/VR.

https://github.com/peterdanieloliver/HGPolyVis

ACKNOWLEDGMENTS

The authors wish to thank the anonymous reviewers and paper chairs
for their constructive feedback.

REFERENCES

[1] S. G. Aksoy, C. Joslyn, C. O. Marrero, B. Praggastis, and E. Purvine.
Hypernetwork science via high-order hypergraph walks. EPJ Data Science,
9(1):16, 2020. doi: 10.1140/epjds/s13688-020-00231-0 2

[2] B. Alsallakh, W. Aigner, S. Miksch, and H. Hauser. Radial sets: Inter-
active visual analysis of large overlapping sets. IEEE Transactions on
Visualization and Computer Graphics, 19(12):2496–2505, 2013. doi: 10.
1109/TVCG.2013.184 2

[3] B. Alsallakh, L. Micallef, W. Aigner, H. Hauser, S. Miksch, and
P. Rodgers. The state-of-the-art of set visualization. Comput. Graph.
Forum, 35(1):234–260, 27 pages, Feb. 2016. doi: 10.1111/cgf.12722 1

[4] N. A. Arafat and S. Bressan. Hypergraph drawing by force-directed
placement. In Database and Expert Systems Applications, pp. 387–394.
Springer International Publishing, Cham, 2017. doi: 10.1007/978-3-319
-64471-4_31 2

[5] C. Berge. Graphs and Hypergraphs. North-Holland Publishing Company,
Amsterdam, 1973. 2, 3

[6] A. Bretto. Hypergraph theory. An introduction. Mathematical Engineering.
Cham: Springer, 2013. doi: 10.1007/978-3-319-00080-0 3

[7] M. Chimani, C. Gutwenger, M. Jünger, G. W. Klau, K. Klein, and
P. Mutzel. The open graph drawing framework (OGDF). Handbook
of graph drawing and visualization, 2011:543–569, 2013. doi: 10.17877/
DE290R-7670 6

[8] M. Dörk, N. Henry Riche, G. Ramos, and S. Dumais. PivotPaths: Strolling
through faceted information spaces. IEEE Transactions on Visualization
and Computer Graphics, 18(12):2709–2718, 2012. doi: 10.1109/TVCG.
2012.252 2

[9] P. Erdös and T. Gallai. On maximal paths and circuits of graphs. Acta
Mathematica Academiae Scientiarum Hungaricae, 10(3-4):337–356, 1959.
doi: 10.1007/BF02024498 2

[10] T. Fan, L. Lü, D. Shi, and T. Zhou. Characterizing cycle structure in
complex networks. Communications Physics, 4(1):272, Dec 2021. doi: 10
.1038/s42005-021-00781-3 2

[11] F. Frank, M. Kaufmann, S. Kobourov, T. Mchedlidze, S. Pupyrev, T. Ueck-
erdt, and A. Wolff. Using the metro-map metaphor for drawing hyper-
graphs. In T. Bureš, R. Dondi, J. Gamper, G. Guerrini, T. Jurdziński,
C. Pahl, F. Sikora, and P. W. Wong, eds., SOFSEM 2021: Theory and
Practice of Computer Science, pp. 361–372. Springer International Pub-
lishing, Cham, 2021. doi: 10.1007/978-3-030-67731-2_26 2

[12] M. Gashler and T. Martinez. Robust manifold learning with CycleCut.
Connection Science, 24(1):57–69, 2012. doi: 10.1080/09540091.2012.
664122 4

[13] J. Hopcroft and R. Tarjan. Algorithm 447: efficient algorithms for graph
manipulation. Commun. ACM, 16(6):372–378, 7 pages, jun 1973. doi: 10.
1145/362248.362272 4

[14] J. D. Horton. A polynomial-time algorithm to find the shortest cycle basis
of a graph. SIAM Journal on Computing, 16(2):358–366, 1987. doi: 10.
1137/0216026 3

[15] L. Isella, J. Stehlé, A. Barrat, C. Cattuto, J.-F. Pinton, and W. Van den
Broeck. What’s in a crowd? Analysis of face-to-face behavioral networks.
Journal of Theoretical Biology, 271(1):166–180, 2011. doi: 10.1016/j.jtbi.
2010.11.033 9, 12, 13, 15

[16] P. Isenberg, F. Heimerl, S. Koch, T. Isenberg, P. Xu, C. Stolper, M. Sedl-
mair, J. Chen, T. Möller, and J. Stasko. vispubdata.org: A metadata
collection about IEEE visualization (VIS) publications. IEEE Transac-
tions on Visualization and Computer Graphics, 23(9):2199–2206, Sept.
2017. doi: 10.1109/TVCG.2016.2615308 8

[17] B. Jacobsen, M. Wallinger, S. Kobourov, and M. Nöllenburg. MetroSets:
Visualizing sets as metro maps. IEEE Transactions on Visualization and
Computer Graphics, 27(2):1257–1267, 2021. doi: 10.1109/TVCG.2020.
3030475 2

[18] T. Kaczynski, K. M. Mischaikow, M. Mrozek, and K. Mischaikow. Com-
putational homology / Tomasz Kaczynski, Konstantin Mischaikow, Marian
Mrozek. Applied mathematical sciences (Springer-Verlag New York Inc.);
v. 157. Springer, New York, 2004. doi: 10.1007/b97315 3

[19] B. Kim, B. Lee, and J. Seo. Visualizing set concordance with permutation
matrices and fan diagrams. Interacting with Computers, 19(5-6):630–643,
2007. doi: 10.1016/j.intcom.2007.05.004 2

[20] C. Kuratowski. Sur le problème des courbes gauches en topologie. Fun-
damenta Mathematicae, 15(1):271–283, 1930. doi: 10.4064/fm-15-1-271
-283 4

[21] A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot, and H. Pfister. UpSet:
Visualization of intersecting sets. IEEE Transactions on Visualization and
Computer Graphics, 20(12):1983–1992, 2014. doi: 10.1109/TVCG.2014.
2346248 2

[22] M. Ley. DBLP: some lessons learned. Proc. VLDB Endow.,
2(2):1493–1500, 8 pages, aug 2009. doi: 10.14778/1687553.1687577
7

[23] R. Mastrandrea, J. Fournet, and A. Barrat. Contact patterns in a high
school: A comparison between data collected using wearable sensors,
contact diaries and friendship surveys. PLOS ONE, 10(9):1–26, 09 2015.
doi: 10.1371/journal.pone.0136497 1, 7

[24] L. Micallef and P. Rodgers. eulerAPE: Drawing area-proportional 3-
Venn diagrams using ellipses. PloS One, 9:e101717, 07 2014. doi: 10.
1371/journal.pone.0101717 2

[25] P. Oliver, E. Zhang, and Y. Zhang. Scalable hypergraph visualization.
IEEE Transactions on Visualization and Computer Graphics, 30(1):595–
605, 2024. doi: 10.1109/TVCG.2023.3326599 1, 2, 4, 5, 6, 7, 8, 9,
14

[26] B. Qu, P. Kumar, E. Zhang, P. Jaiswal, L. Cooper, J. Elser, and Y. Zhang.
Interactive design and visualization of n-ary relationships. In SIGGRAPH
Asia 2017 Symposium on Visualization, p. 15. ACM, 2017. doi: 10.1145/
3139295.3139314 1

[27] B. Qu, E. Zhang, and Y. Zhang. Automatic polygon layout for primal-dual
visualization of hypergraphs. IEEE Transactions on Visualization and
Computer Graphics, 28(1):633–642, 2022. doi: 10.1109/TVCG.2021.
3114759 1, 2, 7, 9

[28] N. H. Riche and T. Dwyer. Untangling Euler diagrams. IEEE Transactions
on Visualization and Computer Graphics, 16(6):1090–1099, 2010. doi: 10
.1109/TVCG.2010.210 2

[29] P. Rodgers, L. Zhang, and A. Fish. General Euler diagram generation.
In Proceedings of the 5th International Conference on Diagrammatic
Representation and Inference, Diagrams ’08, 15 pages, p. 13–27. Springer-
Verlag, Berlin, Heidelberg, 2008. doi: 10.1007/978-3-540-87730-1_6
2

[30] R. Sadana, T. Major, A. Dove, and J. Stasko. OnSet: A visualization tech-
nique for large-scale binary set data. IEEE Transactions on Visualization
and Computer Graphics, 20(12):1993–2002, 2014. doi: 10.1109/TVCG.
2014.2346249 2

[31] R. Santamaría and R. Therón. Visualization of intersecting groups based on
hypergraphs. IEICE Transactions on Information and Systems, 93(7):1957–
1964, Jan. 2010. doi: 10.1587/transinf.E93.D.1957 2

[32] P. Simonetto, D. Archambault, and C. Scheidegger. A simple approach
for boundary improvement of Euler diagrams. IEEE Transactions on
Visualization and Computer Graphics, 22(1):678–687, 2015. doi: 10.
1109/TVCG.2015.2467992 2

[33] P. Simonetto, D. Auber, and D. Archambault. Fully automatic visualisation
of overlapping sets. In Computer Graphics Forum, vol. 28, pp. 967–974.
Wiley Online Library, 2009. doi: 10.1111/j.1467-8659.2009.01452.x 2

[34] G. Stapleton, J. Flower, P. Rodgers, and J. Howse. Automatically drawing
Euler diagrams with circles. J. Vis. Lang. Comput., 23(3):163–193, 31
pages, June 2012. doi: 10.1016/j.jvlc.2012.02.001 2

[35] J. Stasko, C. Gorg, Z. Liu, and K. Singhal. Jigsaw: Supporting investigative
analysis through interactive visualization. In 2007 IEEE Symposium on
Visual Analytics Science and Technology, pp. 131–138, 2007. doi: 10.
1109/VAST.2007.4389006 2

[36] P. Valdivia, P. Buono, C. Plaisant, N. Dufournaud, and J.-D. Fekete. Ana-
lyzing dynamic hypergraphs with parallel aggregated ordered hypergraph
visualization. IEEE transactions on visualization and computer graphics,
27(1):1–13, 2019. doi: 10.1109/TVCG.2019.2933196 2

[37] H.-Y. Wu, B. Niedermann, S. Takahashi, M. J. Roberts, and M. Nöllen-
burg. A survey on transit map layout – from design, machine, and human
perspectives. Computer Graphics Forum, 39(3):619–646, 2020. doi: 10.
1111/cgf.14030 2

[38] Y. Zhou, A. Rathore, E. Purvine, and B. Wang. Topological simplifica-
tions of hypergraphs. IEEE Transactions on Visualization and Computer
Graphics, 29(7):3209–3225, 2023. doi: 10.1109/TVCG.2022.3153895 2,
9, 12, 13

[39] A. A. Zykov. Hypergraphs. Russian Mathematical Surveys, 29(6):89,
1974. doi: 10.1070/RM1974v029n06ABEH001303 4

https://doi.org/10.1140/epjds/s13688-020-00231-0
https://doi.org/10.1109/TVCG.2013.184
https://doi.org/10.1109/TVCG.2013.184
https://doi.org/10.1111/cgf.12722
https://doi.org/10.1007/978-3-319-64471-4_31
https://doi.org/10.1007/978-3-319-64471-4_31
https://doi.org/10.1007/978-3-319-00080-0
https://doi.org/10.17877/DE290R-7670
https://doi.org/10.17877/DE290R-7670
https://doi.org/10.1109/TVCG.2012.252
https://doi.org/10.1109/TVCG.2012.252
https://doi.org/10.1007/BF02024498
https://doi.org/10.1038/s42005-021-00781-3
https://doi.org/10.1038/s42005-021-00781-3
https://doi.org/10.1007/978-3-030-67731-2_26
https://doi.org/10.1080/09540091.2012.664122
https://doi.org/10.1080/09540091.2012.664122
https://doi.org/10.1145/362248.362272
https://doi.org/10.1145/362248.362272
https://doi.org/10.1137/0216026
https://doi.org/10.1137/0216026
https://doi.org/10.1016/j.jtbi.2010.11.033
https://doi.org/10.1016/j.jtbi.2010.11.033
https://doi.org/10.1109/TVCG.2016.2615308
https://doi.org/10.1109/TVCG.2020.3030475
https://doi.org/10.1109/TVCG.2020.3030475
https://doi.org/10.1007/b97315
https://doi.org/10.1016/j.intcom.2007.05.004
https://doi.org/10.4064/fm-15-1-271-283
https://doi.org/10.4064/fm-15-1-271-283
https://doi.org/10.1109/TVCG.2014.2346248
https://doi.org/10.1109/TVCG.2014.2346248
https://doi.org/10.14778/1687553.1687577
https://doi.org/10.1371/journal.pone.0136497
https://doi.org/10.1371/journal.pone.0101717
https://doi.org/10.1371/journal.pone.0101717
https://doi.org/10.1109/TVCG.2023.3326599
https://doi.org/10.1145/3139295.3139314
https://doi.org/10.1145/3139295.3139314
https://doi.org/10.1109/TVCG.2021.3114759
https://doi.org/10.1109/TVCG.2021.3114759
https://doi.org/10.1109/TVCG.2010.210
https://doi.org/10.1109/TVCG.2010.210
https://doi.org/10.1007/978-3-540-87730-1_6
https://doi.org/10.1109/TVCG.2014.2346249
https://doi.org/10.1109/TVCG.2014.2346249
https://doi.org/10.1587/transinf.E93.D.1957
https://doi.org/10.1109/TVCG.2015.2467992
https://doi.org/10.1109/TVCG.2015.2467992
https://doi.org/10.1111/j.1467-8659.2009.01452.x
https://doi.org/10.1016/j.jvlc.2012.02.001
https://doi.org/10.1109/VAST.2007.4389006
https://doi.org/10.1109/VAST.2007.4389006
https://doi.org/10.1109/TVCG.2019.2933196
https://doi.org/10.1111/cgf.14030
https://doi.org/10.1111/cgf.14030
https://doi.org/10.1109/TVCG.2022.3153895
https://doi.org/10.1070/RM1974v029n06ABEH001303

