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Abstract—Artists use different means of stylization to control the focus on different objects in the scene. This allows them to portray

complex meaning and achieve certain artistic effects. Most prior work on painterly rendering of videos, however, uses only a single

painting style, with fixed global parameters, irrespective of objects and their layout in the images. This often leads to inadequate artistic

control. Moreover, brush stroke orientation is typically assumed to follow an everywhere continuous directional field. In this paper, we

propose a video painting system that accounts for the spatial support of objects in the images or videos, and uses this information to

specify style parameters and stroke orientation for painterly rendering. Since objects occupy distinct image locations and move relatively

smoothly from one video frame to another, our object-based painterly rendering approach is characterized by style parameters that

coherently vary in space and time. Space-time-varying style parameters enable more artistic freedom, such as emphasis/de-emphasis,

increase or decrease of contrast, exaggeration or abstraction of different objects in the scene in a temporally coherent fashion.

Index Terms—Nonphotorealistic rendering, video painting, multistyle painting, tensor field design.

Ç

1 INTRODUCTION

PAINTERLY rendering of images and videos has received
much attention in the past two decades. In this paper, we

describe a video painting framework in which style para-
meters as well as brush stroke orientations can be specified
individually for each region (object or background) in some
keyframes and propagated to other frames in a temporally
coherent fashion. We will refer to this as the problem of
multistyle painterly rendering, or simply multistyle painting.
There are a number of benefits in multistyle painting:

1. By spatially varying style parameters such as brush
stroke length, width, and opacity, the artist has the
freedom to emphasize or de-emphasize certain objects
in the scene (Fig. 1c: flower (emphasized) and leaves
(de-emphasized)), to control the level of abstraction or
realism in the resulting painting (Figs. 2d and 2e), to
increase or decrease contrasts between neighboring
objects (Fig. 3c: contrast between red/orange peppers
and greenish peppers is increased), to exaggerate or
trivialize, and certain cinematographic concepts such
as calmness or stress.

2. By temporally varying style parameters based on the
objects, the artist can maintain the aforementioned

coherence and control, or modify the parameters,
such as achieving a rack focus effect (Fig. 9).

3. By allowing region-based brush stroke orientation
design, the user has additional tools to achieve the
aforementioned effects as well as to create illusions
(Fig. 4).

Despite the potential benefits enabled by multistyle paint-
ing, there has been relatively little research in this area.
Most existing work in image and video painting has
focused on mimicking a single painting style where the
style parameters such as brush stroke length, width, and
opacity are constant over the whole space-time domain [1],
[2], [3], [4], [5], [6], [7], [8]. While there has been some work
that can enable certain region-based nonphotorealistic
effects [9], [10], their focus is to typically on automatic
stylization for some particular effect. Consequently, there is
relatively little exploration on the artistic design of multi-
style effects once the segmentation is available. Further-
more, there is little work in systematic design of brush
orientations in video painting [11].

In this paper, we address these issues by providing a
painterly rendering framework for videos. In this framework,
the video is first segmented into regions (objects or back-
ground) in a temporally coherent fashion using an existing
technique [12]. Next, the user defines style parameters and
brush stroke orientation for desired objects by specifying
them in some keyframes. These user specifications are then
automatically propagated to the other frames as well as
regions without any specifications through constrained
optimization. Lastly, the style parameters and stroke orienta-
tions will be used to generate the final rendering.

Our approach facilitates interactive artistic design and
experiments once the segmentation becomes available. Style
parameters can be specified in a small number of objects in
some keyframes and automatically propagated to the whole
video. In addition, as part of our approach, we have
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Fig. 2. An image of a bird (a) is painted in constant style parameter values (b-c) and spatially varying values (d-e). The difference between (b) and

(c) is the size of the strokes. In (b), details are preserved while in (c), the image is abstracted uniformly. With a binary segmentation (bird and

background), the artist controls the amount of abstraction as well as the focus in the painting results (d: focus on the bird; e: emphasis given to the

background flowers).

Fig. 3. This figure illustrates the control over the increase or decrease in contrast with spatially varying style parameters. Given an image of peppers
of various colors (a), two paintings are produced: (b) single style, and (c) multistyle. Notice that the painting in (c) is obtained from (b) when
increasing brightness and the amount of the detail to red and orange peppers only.

Fig. 1. Two stylized frames from a video showing a blooming flower: (a) the original frame, (b) the segmentation of the frame into three parts: petals,
leaves, and stamens, (c) a single van Gogh style is applied to the entire frame, and (d) the same van Gogh style applied to the petals, whereas
spatially varying Pointillist settings are applied to the leaves and stamens with different stroke diameters. The use of different styles, and spatially
varying style parameters results in de-emphasizing the leaves, portraying the realistic fine granularity of the stamens, and enhancing overall contrast
among the three regions. This is possible with the ability to produce temporally coherent segmentation.



developed an image-based painterly rendering algorithm that

can lead to more coherent results than existing geometry-

based methods in which curved brush strokes are explicitly

defined. Moveover, we make use of the color of strokes to

sort brush strokes, which has resulted in strokes with softer

edges and partially alleviated the flickering issue in the

video setting. Finally, we allow the user to easily design

brush stroke orientations in a video, which, to the best of our

knowledge, is the first of its kind. Note that the brush stroke

orientations can be discontinuous across region boundaries,

which is often desirable but has not been supported in past

stroke orientation field design systems such as [13], [6], [11].
The rest of the paper is organized as follows: Section 2

reviews related work. Section 3 describes the style and

orientation design capabilities of our system and Section 4

explains our image-based multistyle renderer for images

and videos. In Section 5, we describe how we generate a

spatiotemporal video segmentation. We present results in

Section 6, and summarize and discuss some future work

in Section 7.

2 RELATED WORK

We will review two areas that are most relevant to the

contributions of this paper: painterly rendering and flow

visualization.

2.1 Painterly Rendering

Painterly rendering has been a well-researched area in

computer graphics. To review all the work is beyond the

scope of this paper. We focus on the most relevant work here.
Haeberli [1] introduces the idea of painterly rendering as

a form of visual representation of objects. Litwinowicz [2]

presents a system in which Impressionistic effects can be

created for images and videos based on user-specified

stroke parameters. Hertzmann [13] describes an automatic

algorithm that generates a number of styles of painting

effects with various stroke sizes. A more physically realistic

effect by adding height fields onto brush strokes is used to

add shading effect to the strokes [5]. Hertzmann [3]

describes another painterly rendering method by formulat-

ing brush stroke placement as an energy optimization
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Fig. 4. This figure illustrates the importance of object-based stroke orientation design. Given an input of a cat, brush stroke orientation is based on
the strong edges in the image (a). The user desires to assign a constant directional field for the background to achieve contrast between the
background and the cat. Without segmentation, a single user-specified constraint (colored arrow in (b)) can only help achieve the artistic goal in a
very local region (b). By adding more constraints in (c), the stroke orientations in the background start to conform. However, this has the side effect
that these constraints also impact the orientation fields in the cat (white regions on her body). With the segmentation (d), the user can easily achieve
the artistic goal with one constraint without modifying the stroke orientations inside the cat (e). Notice the stroke orientations in (e) is the same as in
(a). In (f), hallucinational circular patterns are added to the background, again, without impacting the stroke orientations in the cat.



problem. Brush strokes can be added and removed as the
optimization process iterates. In a rather different approach,
Hertzmann et al. [14] augment images with painterly
appearance using texture synthesis techniques.

Various techniques can be presented to produce video
painting. Hertzmann and Perlin [7] extend the multilayer
approach of Hertzmann [13] to videos. In this approach, brush
strokes from the previous frame will be reused in the next
frame after being moved according to the optical flow. Klein et
al. [15] extend the notion of brush strokes to tubes in 3D space-
time, leading to more coherent but sometime undesirable
appearances. Hays and Essa [6] provide a high-quality
painterly renderer for videos by reusing the idea of optical
flow and by restraining the speed of brush stroke rotation.
DeCarlo and Santella propose a framework for abstracting a
video [4], which is later used to produce video water-
colorization [8]. In addition, Meier produces coherent render-
ing results for synthetic 3D scenes using a combination of
geometry and image-based techniques [16]. Cunzi et al. [17]
address the “shower door” effect in 3D virtual walk-through
by moving the background in a plausible manner. These
techniques assume a single set of style parameters while our
approach assumes space-time-varying style parameters.

All of this work focuses on the rendering aspect of the
painting. In contrast, we wish to provide a system that
facilitates and supports the design and rendering process
with varying style parameters. Hertzmann’s work [13], [3]
in providing level-of-detail control to the user is inspira-
tional to this paper. However, we provide a more
systematic approach that includes an effective segmentation
tool and a user interface for varying style parameter design.
Moreover, in this paper, we introduce the idea of creating a
time-dependent tensor field to guide brush stroke orienta-
tions in a video. Past work [18], [11] applies tensor field
design to image painting only. Based on our literature
review, our system is the first that enables the time-
dependent design capability.

2.2 Flow Visualization

In this paper, we present a painterly renderer that is
inspired by flow visualization techniques (Section 4). To
review all related work in flow visualization is beyond the
scope of this paper, and we will only mention the most
relevant work.

An efficient way of visualizing a vector field is by
showing a set of streamlines, i.e., curves that are tangent to
the vector field everywhere along their paths. Cabral and
Leedom [19] present one such technique by performing line
integral convolution (LIC) on an initial texture of white noise
according to the vector field. For every pixel, they assign a
value by extracting the streamline that contain the pixel and
computing the average intensity of the initial texture along
the streamline. The approach results in a high-quality
continuous representation of the vector field. However, it is
computationally expensive since it requires tracing a
streamline for every pixel. Later, Stalling and Hege describe
a faster way of creating LIC images by reducing the number
of streamlines that need to be traced (FastLIC) [20]. Van
Wijk [21] develops an interactive and high-quality image-
based flow visualization technique (IBFV) for planar vector

fields. IBFV enables interactive display of vector fields with
the assistance of graphics hardware.

Zhang et al. [11] demonstrate that the edge field
extracted from an image is a tensor field. They also point
out that treating a tensor field as a vector field by simply
removing the ambiguity in the orientation causes visual
artifacts. Delmarcelle and Hesselink [22] propose to
visualize 2D or 3D tensor fields with hyperstreamlines,
which are curves that tangent to the eigenvectors of the
tensor fields everywhere along their paths. Zheng and Pang
[23] propose a tensor field visualization technique that they
call HyperLIC. This method makes use of LIC to produce
images that resemble visualizations based on hyperstream-
lines. Zhang et al. [11] adapt the IBFV approach of van Wijk
to tensor fields, which results in an interactive and high-
quality tensor field visualization.

Our rendering pipeline adopts the approach of Zhang et al.
[11]. However, the application requirement is very different.
We will provide details about our advection algorithm in
more detail, in Section 4.

3 STYLE AND ORIENTATION FIELD DESIGN

Our multistyle rendering framework consists of three
stages:

1. Video analysis and segmentation,
2. Segmentation-enabled style and orientation design,

and
3. Rendering.

In the first stage, the input video V is analyzed to
compute the following information: the per-frame edge
field E and optical flow field f as well as a temporally-
coherent segmentation of V into regions Ri (1 � i � n) in
the space-time domain.

In the second stage, the user specifies style parameters
and designs stroke orientations based on the segmentation.
This results in a number of scalar fields sj (1 � j � m), each
of which corresponds to a style parameter such as stroke
width or opacity, as well as a tensor field T that guides
brush stroke orientations in the video.

In the last step, an output video V 0 is produced by our
painterly rendering algorithm that makes use of the
segmentation, the style parameters, the optical flow, as
well as the tensor field.

The contributions of this work lie in the second and third
stages, which we describe in detail in this section and
Section 4, respectively. In Section 5, we will mention
existing techniques that we employ for video analysis, such
as the segmentation method of Brendel and Todorovic [12].

In the second stage, the user can interactively specify
desired style parameters as well as brush stroke orienta-
tions. These parameters will then be used in the final stage
of rendering the output video (Section 4). The style
parameters that our system supports include the following,
most of which are inspired by the work of Haeberli [1] and
Hertzmann [13].

. Stroke size: describes the diameter of a stroke for
Pointillism styles and the width of the stroke for
other styles such as Impressionism, Expressionism,
van Gogh, and Colorist Wash.
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. Stroke length: is the desirable brush stroke length
which allows long, curved brush strokes and can be
used to illustrate natural anisotropy in the images
such as silhouettes.

. Stroke opacity: controls the amount of transparency or
hardness in a brush stroke and is useful to achieve
styles such as the Colorist Wash.

. Color shift: describes changes in colors of all brush
strokes in the video or a region. It consists of three
parameters that describes the shift in hue, saturation,
and value, respectively. This parameter can be used
to alter the overall tone of the image (Fig. 8).

. Color jittering: controls the maximal amount of
jittering in the color of each brush stroke. When this
parameter is zero, the color of each brush stroke is
taken from the pixel in the input video corresponding
to the seed location of the stroke. Having a nonzero
value allows greater variation and thus the contrast
between neighboring brush strokes, which is desir-
able in Expressionism and the van Gogh style [6].

. In-stroke texture height and density: allows a stroke to
be textured, as in [5].

In addition to these art-driven parameters, we also
support a number of algorithm-specific parameters such as:

. Number of layers: which allows layers of brush
strokes of different sizes to be overlaid [13].

. Error threshold: is used to decide where on the canvas
additional strokes are needed [13].

Our system assumes that style parameters are defined at
each pixel.

The orientation of strokes is an important ingredient in
conveying features with directions, such as the silhouette
and motions of objects in the scene. Unlike style parameters,
the orientation field is not a scalar field and contains
directional information. We will discuss the design of
scalar-valued style parameters and the orientation field in
Sections 3.1 and 3.2, respectively.

Fig. 5 shows the interface of our system. The window
consists of four parts: a canvas (upper-left), a control panel
(right), a frame browser (middle-left), and a system message
box (lower-left). The canvas can be used to show the input
(image or video), the segmentation, the visualization of the
orientation field, and the painterly result. When the input
has been segmented, the user can select any region in the
segmentation by clicking on a pixel belonging to that region.
When this happens, other regions will be dimmed while the
selected region remains with its original colors. Clicking on a
selected region will unselect it and undo the dimming of
other regions. The user can then use the control panel to
assign style parameters or design orientation fields for the
selected region. For convenience, we have provided some
default styles such as van Gogh, Colorist Wash, Impression-
ism, Pointillism, and Watercolor. The user can simply apply
any of these styles to the designed object by clicking the
corresponding button. The style parameters can be modified
at any moment and the corresponding result will be shown
momentarily. In addition, the user can design brush stroke
orientation using the control on the tab titled “Field Design/
Display” (not shown in Fig. 5). Note that the controls for

field design is a straightforward adaption from the tensor

field design system of Zhang et al. [11]. The user can use the
frame browser to jump to any frame or the immediate

previous or next keyframe for any given object, with either
style parameters or stroke orientations. When this happens,

any selected region will remain selected. Finally, the

message box is used to provide feedback to the user with
useful information. Next, we will describe the mathematical

framework behind our design functionalities.

3.1 Style Parameter Design and Propagation

We will first discuss the design of spatially varying style
parameters in an image or a frame of a video.

Given an input image I and its segmentation
R ¼ fR1; R2; . . . ; Rng, our system allows a user to select a

region Ri (1 � i � n) and associate a set of style parameters
SS ¼ fs1; s2; . . . ; smg to it. The style parameters are then

assigned to every pixel in Ri. We refer to Ri as a key region.

Regions not receiving any specification are referred to as
free regions. Our system automatically assigns values to free

regions by propagating the parameters from the key regions
through the following relaxation process. Let Rj be a free

region and p a pixel in Rj. Also, let sk 2 SS be the kth style

parameter. Then,

skðpÞ ¼
X
r

!rskðprÞ; ð1Þ

where prs are neighboring pixels of p in the image, and

!r � 0 is the weight of the rth neighboring pixel satisfyingP
r !r ¼ 1. In our setting, we only consider four neighboring

pixels and choose !r ¼ 1
4 . When p is on the boundary of the

canvas we adjust the weights accordingly. The collection of
these equations for pixels in the free regions gives rise to a

system of discrete Laplace equations for which the parameter
values of the pixels in the key regions serve as the boundary

conditions. The discrete Laplace equations result in a sparse
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Fig. 5. This figure shows the user interface of our system.



linear system which can be solved efficiently using a

multigrid Gauss-Seidel method [24].
Given a video V and a temporally coherent video object

segmentation R ¼ R1; R2; . . . ; Rn, our system allows the

user to specify desired style parameters for a region Ri 2 R
in a set of keyframes Fi;j : 1 � j � T ðiÞ, where T ðiÞ is the

number of keyframes for region Ri. Note that T ðiÞmay vary

for different regions Ri. Also, two regions Ri1 and Ri2 may

not occur in the same keyframe. The specified values are

automatically propagated to the rest of the video, i.e., to all

pixels that were not given a style. Similar to the case of

images, this can be achieved by using the Laplace equation

as follows:

skðptÞ ¼
X
r

!rskðprÞ þ !fskðFðptÞÞ þ !bskðF�1ðptÞÞ; ð2Þ

where FðptÞ and F�1ðptÞ are the images of pt under the
forward and backward optical flows, respectively. The total
weight

P
r !r þ !f þ !b ¼ 1. However, this formulation

requires the equation be solved over the 3D domain of
M �N � L, where M, N , and L are the number of rows,
columns, and frames, respectively. While it is possible to
solve this equation, doing so can reduce the interactivity
that we wish to provide to the users. Instead of solving with
the most general formulation given by (2), we break the
problem down into two subproblems. First, given region Ri

and a set of corresponding keyframes, how do we estimate
the style parameters of the pixels in Ri in a nonkeyframe?
Second, how do we estimate the style parameters for a pixel
in region Ri when there are no keyframes, i.e., T ðiÞ ¼ 0? To
address these questions, we consider the following two-
step approach:

1. Given a region Ri and a frame number j, we locate
the closest previous and next keyframes involving
Ri. If both exist, then we assign style parameters to
Ri at frame j by performing an interpolation
between the style parameters of the two enveloping
keyframes. The interpolation function fðtÞ can be
linear or nonlinear. Nonlinear interpolation schemes
allow the user to control the speed of transition
between styles, which can be used to generate the
effects such as calmness and stress. If only one exists,
then we copy the style parameters from the key-
frame. In the special case that j is a keyframe for
region Ri, no action is needed. This step ensures that
the user specifications are continuously propagated
from keyframes to the entire video.

2. We resolve style parameters of regions for which no
keyframe was specified. Note that after the first step,
there is at least one region in each frame that has
well-defined style parameters. These values are
simply propagated to the rest of the pixels in a
frame by reusing (1).

This two-step approach does not explicitly take into

account the optical flow since the relaxation is done

independently per frame. However, assuming that under-

lying video segmentation is sufficiently temporally coher-

ent, the aforementioned approach approximates well the

optimal solution.

3.2 Stroke Orientation Field Design and
Propagation

Stroke orientation is an important parameter for providing
artistic control. Zhang et al. [11] describe a tensor field
design system for the purpose of guiding stroke orientation
for image painting. The tensor field can be created from
scratch or by modifying an existing field extracted from the
image. User specifications are converted into basis tensor
fields and summed. While this system has shown great
promise in allowing stroke orientation control, it is
inefficient for our purposes for two reasons. First, it is
designed to work with only images and does not generalize
to video in a straightforward fashion. Second, it assumes
that the whole image is a single region and always
generates a continuous tensor field. However, maintaining
discontinuity in stroke orientations across object boundaries
is often desirable. Despite these limitations, we feel that the
idea of basis tensor fields is intuitive and effective.
Consequently, we adapt this approach to construct a tensor
field in a segmented video.

We first review relevant concepts of tensor fields and the
idea of tensor field design by combining basis tensor fields.
A second-order tensor T is a 2� 2 matrix

t11 t12

t21 t22

� �
:

T is symmetric if t12 ¼ t21 and traceless if t11 þ t22 ¼ 0. In this
paper, we consider second-order symmetric, traceless
tensors, referred to as tensors in the sequel, for simplicity.
Such a tensor has the following form:

T ¼ u v
v �u

� �
¼ � cos � sin �

sin � � cos �

� �
; ð3Þ

where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t211 þ t212

p
and � ¼ tan�1ðt12

t11
Þ. T is degenerate when

� ¼ 0. A nondegenerate tensor has two eigenvalues �� and
two families of mutually perpendicular eigenvectors corre-
sponding to the eigenvalues. Zhang et al. [11] use the
eigenvectors corresponding to the eigenvalue þ� to guide
the stroke orientations. We will follow this convention.

A tensor field is a continuous tensor-valued function.
Useful tensor patterns for painterly rendering include
regular patterns in which the eigenvector directions are
the same everywhere and singular patterns such as wedges,
trisectors, nodes, and centers [11]. A basis tensor field
corresponds to a pattern that can be specified by the
following radial basis function:

Tiðx; yÞ ¼ e�d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xiÞ2þðy�yiÞ2
p

Mðx� xi; y� yiÞ ð4Þ

in which d is a decay constant, ðxi; yiÞ is the center of
the basis function, and Mðs; tÞ is a function describing the
tensor patterns. For example, a regular pattern can be
characterized by a constant function

M ¼ u0 v0

v0 �u0

� �

while a wedge can be characterized by

Mðs; tÞ ¼ s t
t �s

� �
:
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In the framework proposed in [11], a tensor field is
generated by converting each user specification of a regular
or singular pattern into a basis field and combining them.
This framework has proven both fast and intuitive. In this
paper, we adopt the same framework and adapt it to
segmented videos.

Given an image I with segmentation R ¼ R1; R2; . . . ; Rn,
a region Ri is a key region with respect to orientation if the
brush stroke orientation in Ri is either specified by the user
or automatically extracted from the image such as the edge
field (Section 5). Otherwise, Ri is a free region.

For a region Ri, the brush stroke orientation field is
generated as follows: PiðpÞ ¼ wiEðpÞ þ ð1� wiÞ

P
j Mi;jðpÞ,

in which E is the edge field extracted from the image, Mi;j is
the basis field corresponding to a user specification (design
element [11]), and wi 2 ½0; 1� is the weight constant assigned
to the region. Notice that the region-based field design
approach affords greater freedom in generating desired
stroke orientations as the user need not be concerned with
the impact of a user specification on the pixels not in the
intended region. In contrast, the single-region field design
method often requires the user to provide additional
specifications just to ensure that boundaries between regions
are preserved by the field. Note that the center of a design
element need not be inside the intended region. This is useful
when an object is broken into several connected components
such as the sun is partially occluded by the clouds (Fig. 8).

For regions where no user specification is given, our
system assigns them values using the same framework in
which style parameters are propagated (Section 3.1). Notice
that in this case, we do not have a scalar field that
represents some style parameter. Instead, we need to
propagate directional information into free regions. Recall
that the directional information is encoded by a tensor field,
i.e., its major eigenvectors. Zhang et al. [11] have demon-
strated that such a propagation should be done by solving a
pair of Laplace equations similar to (1). Basically, we treat
the entries in the tensor field as independent style
parameters and reuse the multigrid solver to propagate
the tensor field to unknown regions. Note that for the type
of tensors that we are concerned with, there are only two
independent variables in (3): u ¼ � cos � and v ¼ � sin �.
Consequently, the amount of time to propagate stroke
orientations is roughly twice the time for a style parameter.

Designing a tensor field for a video poses another
challenge. In this setting, a set of constraints have been
specified in different keyframes, and we wish to propagate
them to the whole video. Similar to style parameters such as
stroke length and opacity, we first propagate the basis tensor
fields from keyframes to nonkeyframes for regions where
some user specifications exist. The only complication here is
that we need the ability to update the center location ðxi; yiÞ
and pattern functionMi;jðx; yÞ of a user specification (4) from
a keyframe to a nonkeyframe. This is necessary as the object
such as a dolphin can jump and spin, and the user
specification for one frame will not be able to achieve its
original intention without accounting for the motion of the
object. Note that we do not use optical flow for this purpose
due to the noise and degeneracy often associated with its
estimation. Instead, we obtain the center and orientation of an

object by computing its best fitting ellipse through linear PCA
analysis [25]. This allows us to track the motion of the object
including translation (center movement), global rotation (axis
rotation), and isotropic and anisotropic global scalings. We
can now go through a nonkeyframe and compute the tensor
field values for pixels in key regions using updated center
location and pattern functions. Next, values from the key
regions in the frame are propagated to free regions by the
aforementioned tensor-valued relaxation process.

4 MULTISTYLE PAINTERLY RENDERING

Once all style parameters and stroke orientations have
been populated to each pixel in every frame, we enter the
third stage of our pipeline in which the video is
processed, according to the style parameters. We provide
two algorithms.

4.1 Explicit Stroke Method

The first one is a straightforward adaptation from the
renderer of Hertzmann [13], and Hays and Essa [6]. For
images, this approach first places the brush stroke seeds
(points) on a jittered 2D grid. Then every seed is traced along
a directional field, which results in a streamline. The stream-
line is then fattened into a curved region (stroke) by a
uniformly defined stroke width. Once the canvas has been
populated with these strokes, it is compared to a blurred
version of the input image. Additional brush strokes with a
smaller brush stroke width will be placed where the
difference between the painting and the blurred image is
larger than some threshold. This process then repeats. The
resulting images can be further enhanced by embossing
stroke textures to achieve a 3D effect [5]. It is straightforward
to use this approach to support varying style parameters.
The properties of a stroke are determined by the pixel for
which it is centered. This way we do not have to recompute
and reevaluate the strokes during streamline tracing. Fig. 6
illustrates this process with the painting of an eye image
using varying style parameters. For videos, we follow the
approach of Hays and Essa [6] by using the optical flow to
move the centers of strokes from the previous frame and by
adding and removing strokes when necessary.

There are a number of complications. For example, the
number of layers, an integer, is a style parameter in our
system that can be propagated and interpolated. Yet, after
the relaxation process, this number must become a rational
number. To overcome this problem, we snap the number of
layers to the nearest integer while maintaining a continu-
ously transitioned area error threshold. For a style that
requires only one layer, we will set the corresponding area
error threshold to the maximum number, which means no
upper layer strokes are needed. Then, gradually lowering
this number as one travels into multilayer regions in which
the area threshold is also lower, the number of upper layer
strokes gradually increases.

Another problem is the brush stroke density which leads
to a strong sense of discontinuity. We do not address the
density problem as it requires the handling of discontinuity
in the number of strokes placed over the canvas. Instead, we
assume a constant density for all styles. While this seems
overly constraining, in practice, we have found that the
variety of styles our approach can simulate is not
significantly affected by this limitation.
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We have observed that this rendering technique seems to
have a strong emphasis on individual strokes, especially for
van Gogh and Impressionist styles. While this may be desired
for image rendering, we have noticed much flickering in
painterly processed videos due to the relative movement and
visibility changes among overlapping strokes. Though we
can use in-stroke opacity textures, it does not alleviate the
problem due to the relatively small size of the strokes. To deal
with this, we have developed a second renderer which we
refer to as an implicit stroke method. For convenience, we will
also refer to the renderer of Hertzmann [13] and Hays and
Essa [6] as an explicit stroke method.

4.2 Implicit Stroke Method

Our implicit stroke method differs from the explicit stroke
method mainly in one regard: stroke generation. To
generate brush strokes on a layer, we first compute a set
of seeds each of which is the starting point of a brush stroke
on this layer. Next, every seed is drawn onto a temporary
canvas C0 as a colored disk where the color is from the pixel
in the input I or a blurred version of it. Finally, we advect
the canvas as an image, according to the stroke orientation
field. The advection is performed by iteratively warping the
current canvas Ci and compositing the result with the
original canvas C0 to obtain the new image Ciþ1. Fig. 7
demonstrates this process. When composing the images at
the pixel level, we face a challenge that the ID of the strokes
are not well maintained during the warping of the canvas
(as an image). Consequently, this can lead to inconsistent
composition of pixels in overlapping strokes, which in turn,
leads to color bleeding between them. To overcome this

problem, we consider the following composite function f
for two images A and B:

fðpÞ ¼
AðpÞ; bBðpÞ ¼ 1;
BðpÞ; bAðpÞ ¼ 1;
minðAðpÞ; BðpÞÞ; bAðpÞ ¼ bBðpÞ ¼ 0;

8<
: ð5Þ

where bRðpÞ is a binary-valued function that takes a value of 0
if the pixel p is covered by a stroke in imageR. Otherwise, it is
given a value of 1. Basically, if p is not covered by any brush
strokes in one of the images in composition, we use the color
of p from the other image. This ensures consistent colors
within a single stroke as it is being advected over the canvas.
Note that this includes the case when bAðpÞ ¼ bBðpÞ ¼ 1, i.e.,
the pixel is not covered by brush strokes in either image. In
this case, the pixel belongs to background in both images and
will remain so after the composition.

When a pixel is covered in both images, i.e., there are at
least two brush strokes that cover it, we choose the color
which is smaller, according to a total order on the space of
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Fig. 7. This figure illustrates our process of advecting a source image
(a) in the direction of an underlying vector field V . The image in (b) is
obtained by warping (a) based on V and composed with (a). Warping
(b) and composing it with (a) results in (c).

Fig. 6. An example workflow of our system: given the input image of an eye, the initial seeds are assembled in an image (a) which is advected
according to the edge field shown in (b) to obtain the first-layer painting (c). Additional layers (d and e) are generated in a similar fashion, which are
then combined with the first layer to form the final multistyle rendering (f). The eye is rendered in a three-layer Impressionist style, the eyebrow in a
one-layer van Gogh style, and the face in a one-layer Pointillist style.



colors. Given two colors C1ðR1; G1; B1Þ and C2ðR2; G2; B2Þ,
we choose C1 if

1. R2
1 þG2

1 þB2
1 < R2

2 þG2
2 þB2

2, or
2. R2

1 þG2
1 þB2

1 ¼ R2
2 þG2

2 þB2
2 and G1 < G2, or

3. R2
1 þG2

1 þB2
1 ¼ R2

2 þG2
2 þB2

2 and G1 ¼ G2 and R1 <
R2, or

4. R2
1 þG2

1 þB2
1 ¼ R2

2 þG2
2 þB2

2 and G1 ¼ G2 and R1 ¼
R2 and B1 < B2.

Otherwise, we choose C2. In practice, we have found less
than one percent of total pixels ever require the second test.
Notice that any total ordering can reduce bleeding between
neighboring strokes. Finding the optimal ordering that
achieves the best artistic looks is beyond the scope of this
paper and left for future exploration. The idea of a total
color ordering has been used in adding security to images
[26]. Notice our definition is slightly different from theirs.

While the implicit stroke method can also be accom-
plished through techniques such as LIC [19], we choose to
adapt the technique of texture-based tensor field visualiza-
tion technique of Zhang et al. [11], which is based on the
IBFV technique of van Wijk [21].

The explicit and implicit methods can both support
interactive design, with the explicit method being slightly
faster (under 0.5 second per frame for one layer). On the
other hand, the implicit method appears to focus less on
individual strokes, and thus, is less sensitive to sudden
change in strokes and more coherent in the video setting.
All the example videos in this paper were generated using
the implicit method.

5 VIDEO ANALYSIS AND SEGMENTATION

In this section, we describe how we compute the optical
flow and perform video segmentation. None of this work is
novel as we reuse existing methods.

5.1 Edge Field and Optical Flow Estimation

An automatic video painting algorithm typically extracts
the following information from the video: a directional field
that orients brush strokes in each frame, and an optical flow
field that moves brush strokes to follow the underlying
objects that they depict [7], [6].

Our estimation of the directional field is based on [13],
[11]. First, we estimate the image gradient vector field G by
using a Sobel filter. Next, we generate a second-order
symmetric tensor field whose minor eigenvectors align with
the image gradient vectors. The major eigenvectors of this
tensor field are the directional field. Finally, we perform
tensor field smoothing [11] in both space and time. This
leads to more spatiotemporally coherent stroke orientations.
Note that this directional field will be modified during the
second phase of our framework: style and orientation
design (Section 3.2). Moreover, it can be computed using
other edge detection filters.

Optical flow estimation is done using the Lucas-Kanade
method [27]. In practice, we compute both the forward and
backward optical flow fields which allows us to transfer
user specification in both style and orientation design from
keyframes to other frames (Section 3).

5.2 Spatiotemporal Video Segmentation

Obtaining spatiotemporal video segmentation is necessary
for any region-based video processing operations, such as
video matting [28], rotoscoping [29], and video tooning [9].
In our framework, it enables region-based style and
orientation design. There are several approaches to achiev-
ing a spatiotemporal video segmentation [30], [31], [10],
[32], [9]. For our purposes, any of these spatiotemporal
video segmentation methods can be used. Specifically, we
use the method presented in [12], because it does not
require any models of, or prior knowledge about objects
and their motions in the scene. Also, it is relatively fast and
user-friendly (see more detailed specifications in Section 6).

We wish to emphasize that it is not the goal of this paper
to develop a new video segmentation method. Therefore,
below, we will only briefly review the segmentation method
of [12] that we use in this paper, for completeness. The
algorithm initially performs frame-by-frame 2D segmenta-
tion, and then tracks similar regions across the frames, such
that the resulting tracks are locally smooth. Tracking is
conducted by many-to-many matching of groups of
spatially adjacent regions in one frame with groups of
adjacent regions in the next frame. This partitions the
spatiotemporal video volume into tubes that are coherent in
space and time. Since region boundaries coincide with
object boundaries, a cross section of the tubes and any video
frame delineates all objects present in the frame. The
extensive experimental evaluation of this method, pre-
sented in [12], suggests that the proposed approach
compares favorably with the state of the art.

6 RESULTS

We have applied our system to a large number of example
images or videos. Figs. 2, 3, and 4 provide examples in
which an input image is processed using multistyle
rendering to achieve various artistic goals. Next, we show
frames from processed videos.

As the first example, we show the power of spatially
varying styles with a video of a blooming flower that was
segmented into three regions: stamens, petals, and leaves
(Fig. 1b). The stamens contain the highest frequency details
and the petals have strongest anisotropy. There is also motion
in the leaves due to the movement of the highlight (upper-
right). Rendering the video, using the same style parameters
such as van Gogh (Fig. 1c), often cannot adequately maintain
the contrast between these characteristics. Using spatially
varying style parameters, the artist made the following style
assignments: stamens (a Pointillist style), petals (van Gogh
style), and leaves (a Pointillist style with a diameter twice as
large as that for the stamens) (Fig. 1d). With this setting, the
detail in the stamens is maintained without sacrificing the
contrast between the three regions.

The second example video shows a setting sun moving
behind clouds (Fig. 8a). The artist increased the contrast
between the clouds and sun by gradually shifting the hue of
the background (clouds and sky) from yellow to purplish
blue through controlled color modification and by shifting
the saturation of the strokes representing the sun toward
pure colors (Fig. 8b). This allows stroke movement in the
dark sky region to become more visible, thus shifting the
focus from the sun to the sky and clouds to reinforce that
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the night is coming. The design was inspired by van Gogh’s
Starry Night.

The third example highlights the benefits of time-varying
styles in achieving an effect similar to a rack focus used in
cinema. In a rack focus the lens focus is changed during a
shot so that one object remains in focus while the other goes
out of focus. This is used to direct viewer attention to
different regions of the frame. In our example, we are using
variation in Pointillist brush size as a means of emphasizing
or de-emphasizing regions of an image. The video shows a
woman, her child, and their interaction. The video is
segmented into the woman, her hat and hair, the child,
her hair, and the background. There are a number of
motions in the video such as the woman smiling, pointing,
and kissing the child as well as the child turning her head
and smiling. Fig. 9 shows three frames from the output
video in which the artist initially assigns a style to both
faces with high details. Then, the style is gradually varied to
a low-detailed one for the child to reduce the attention on
her as the mother points, turns her head, and smiles (A
frame in which this has occurred is shown in Fig. 9a). Later,
the style for the child transitions back to the original high-
detail style as her mother kisses her. Meanwhile the style for
the mother is switched to the same low-detail one used on
the girl (Fig. 9b). Toward the end, the styles for both women
are returned to the same original high-detailed one (Fig. 9c).
Notice the rack focus effect generated by varying style
parameters over time.

In the next example, we show temporal transition of
stress to calmness with a video showing a dolphin
repeatedly jumping out of water (Fig. 10). Starting with a
sense of stress in which the artist shifts the stroke hues. This
effect then smoothly transitions into a sense of calmness as
the degree of color shifts is reduced.

In the last example, we demonstrate the power of
combining varying style parameters with stroke orientation
design with the dolphin video. In Fig. 11a, the frame was
rendered using the same style parameters for every object in
the scene: the dolphin, the water, the sky, a mountain, and a
bridge. The artist then assigned different style parameters
to these objects (Fig. 11b) to add more details to the dolphin.
The interaction between the dolphin and the water was
further enhanced through stroke orientation design to
create the illusion of ripples (Fig. 11c: where the dolphin
touches the water).

The rendered clips corresponding to these images can be
found in the supplementary video.1 The runtime of the
employed video segmentation method [12] depends on
the number of objects of interest and the frame size. For the
dolphin video, it took about 30 seconds to process 100 frames
without any user intervention. However, this process in
slowed down by changes that the user may want to make in
every frame. The design of style parameters and orientation
fields depends on the number of objects, the number of
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Fig. 9. Rack focus is shown on three frames from a video with space-time-varying stroke diameters: (a: Frame 161) mother in focus and girl out of
focus, (b: Frame 429) mother out of focus and girl coming into focus, and (c: Frame 600) both women in focus.

Fig. 8. Two frames from a video of sunset. Notice the change of hue in the background color allows the additional focus on the sky and clouds.

1. http://web.engr.orst.edu/~zhange/multistyle_painting.html.



keyframes, and the number of design changes to be made. For
the flower video, where there are three regions, five key-
frames, and the total design time was 230 seconds for
311 frames. Please note that the parameters for the supple-
mentary video were designed by the artist on our team, who
was a novice to our system and needed only a small period of
time to be productive with our system—the period that is
comparable to learning to use any other commercially
available painterly rendering system. The design process is
made easier with our system by allowing the user to start from
some existing styles and make a small number of adjust-
ments. The orientation field design for the dolphin took
approximately 10 minutes. Furthermore, the rendering time
for these videos is on the average of 2.5 seconds/frame. The
segmentation was performed on a computer of 1 GB RAM
and a 1.3 GHz CPU. The design and rendering was done on a
computer that has an NVIDIA 8800 GTX card with 512 MB
video memory and Pentium IV with a speed of 3.80 GHZ.

7 CONCLUSION

In this paper, we describe a system for the design and
painterly rendering of videos with style parameters varying

in space and time. Our system enables a wide range of
artistic controls including brush stroke colors, widths,
lengths, and opacity as well as brush stroke orientations.
To our knowledge, the design of stroke orientation field in a
temporally coherent fashion is the first of this kind. Our
design tool is both interactive and intuitive. It can
automatically propagate rendering parameters to the video
thus reducing the amount of labor work. We provide two
painterly renderers, explicit and implicit methods, by
adapting existing painting methods and by applying flow
visualization techniques, respectively. The implicit stroke
method requires less focus on individual strokes, and is,
thus, less sensitive to sudden changes in stroke visibility.
We have demonstrated the effectiveness of our system with
several examples.

The efficiency of our system greatly depends on the
quality of the employed segmentation method. For exam-
ple, when there is semitransparent object such as water in
the dolphin video, we have noticed that it is difficult to
always obtain a clean segmentation (Fig. 12). As the dolphin
jumps in and out of water, it is not always clear how to
classify pixels that represent the part of dolphin underwater
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Fig. 11. Corresponding frames from three different renderings of a video of a swimming dolphin: (a) single style, (b) multiple styles, and (c) same as
(b) with additional design of stroke orientations. Notice that with control over stroke orientations (c), an illusion of rippling effect was added while the
dolphin was coming out of the water.

Fig. 10. Using space-time-varying style parameters, we achieve a transition of a stress effect (a) to a calm effect (c). In (b), the transition is shown.



in a temporally coherent fashion. The vision researchers on
this team plan to further investigate the issue as part of their
future work.

Maintaining temporal coherence is still a great challenge.
This is perhaps the most clear in the flower example, where
there is stronger flickering effect toward the end when
the flower has fully bloomed. Fig. 13 illustrates this with three
frames. Notice that there is little difference between the first
frame in the sequence (Fig. 13a) and the immediate next frame
(Fig. 13b). However, when comparing Fig. 13b with Fig. 13c,
that is, 10 frames after, it is quite clear that the order of
neighboring strokes have changed in many part of the image.
The relatively sudden visibility change between neighboring
strokes is the source of the problem and requires further
investigation. On the other hand, we note that the orientations
of these strokes do not change significantly over time,
indicating temporal coherence of our tensor fields.

There are a number of future research avenues for this
work. First, we plan to investigate a more rigorous handling
of time-dependent tensor field design. In particular, we
wish to understand how to improve the quality of tensor
field with explicit control over its smoothness and topology,
such as singularities and bifurcations. We also plan to study
how to edit the optical flow field using vector field design

techniques. Second, the idea of using color orders to sort
brush strokes is interesting, and we plan to pursue this
direction in the near future. Finally, we are interested in
means to propagate style parameters and orientation fields
directly in the space-time domain rather than the two-step
approach we use in this paper. We believe that solving in
3D can lead to smoother results.
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