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Quantifying the spatial and temporal footprint of multiple environmental stressors on
marine fisheries is imperative to understanding the effects of changing ocean conditions
on living marine resources. Pacific Cod (Gadus macrocephalus), an important marine
species in the Gulf of Alaska ecosystem, has declined dramatically in recent years,
likely in response to extreme environmental variability in the Gulf of Alaska related to
anomalous marine heatwave conditions in 2014–2016 and 2019. Here, we evaluate
the effects of two potential environmental stressors, temperature variability and ocean
acidification, on the growth of juvenile Pacific Cod in the Gulf of Alaska using a novel
machine-learning framework called “stress-scapes,” which applies the fundamentals
of dynamic seascape classification to both environmental and biological data. Stress-
scapes apply a probabilistic self-organizing map (prSOM) machine learning algorithm
and Hierarchical Agglomerative Clustering (HAC) analysis to produce distinct, dynamic
patches of the ocean that share similar environmental variability and Pacific Cod growth
characteristics, preserve the topology of the underlying data, and are robust to non-
linear biological patterns. We then compare stress-scape output classes to Pacific
Cod growth rates in the field using otolith increment analysis. Our work successfully
resolved five dynamic stress-scapes in the coastal Gulf of Alaska ecosystem from 2010
to 2016. We utilized stress-scapes to compare conditions during the 2014–2016 marine
heatwave to cooler years immediately prior and found that the stress-scapes captured
distinct heatwave and non-heatwave classes, which highlighted high juvenile Pacific
Cod growth and anomalous environmental conditions during heatwave conditions.
Dominant stress-scapes underestimated juvenile Pacific Cod growth across all study
years when compared to otolith-derived field growth rates, highlighting the potential for
selective mortality or biological parameters currently missing in the stress-scape model
as well as differences in potential growth predicted by the stress-scape and realized
growth observed in the field. A sensitivity analysis of the stress-scape classification
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result shows that including growth rate data in stress-scape classification adjusts the
training of the prSOM, enabling it to distinguish between regions where elevated sea
surface temperature is negatively impacting growth rates. Classifications that rely solely
on environmental data fail to distinguish these regions. With their incorporation of
environmental and non-linear physiological variables across a wide spatio-temporal
scale, stress-scapes show promise as an emerging methodology for evaluating the
response of marine fisheries to changing ocean conditions in any dynamic marine
system where sufficient data are available.

Keywords: stress-scapes, Gulf of Alaska, machine learning, visualization, Pacific cod, multiple environmental
stressors

INTRODUCTION

Environmental variability and associated trends induced by
climate change can create unique and potentially stressful
conditions for marine fisheries that fluctuate through space
and time. Increasing water temperatures and ocean acidification
related to changing ocean conditions have the potential to
negatively impact individual fish – through direct and indirect
effects – which can potentially impact fisheries by way of fishable
biomass, annual stock productivity, and spatial shifts in the
population outside of the traditional fishing areas (Holsman et al.,
2020; Laurel and Rogers, 2020). The Gulf of Alaska Pacific Cod
(Gadus macrocephalus) fishery is one example of a commercial
fishery that is highly susceptible to changing ocean conditions.
In recent years, Pacific Cod abundance has declined dramatically
in the Gulf of Alaska (GOA) ecosystem, leading to a fisheries
disaster declaration in 2018 and a closure of the federal fishery in
2020 (Barbeaux et al., 2020). Quantifying the spatial and temporal
footprint of modern environmental stressors on GOA Pacific Cod
is crucial for ensuring the accuracy of plans and forecasts for this
valuable fishery.

Decadal and long-term patterns influence the GOA’s thermal
variability due to warm-phase shifts of climatic phenomena and
background warming related to climate change. The GOA has
also experienced two anomalous marine heatwave events in the
past decade. Between late 2013 and 2016, a marine heatwave
occurred in the GOA that exceeded the magnitude and duration
of any other heatwave on record in the region. This heatwave
event led to temperature anomalies greater than 2.5◦C (Bond
et al., 2015; Di Lorenzo and Mantua, 2016) and unprecedented
shifts in the region’s biological communities, including increases
in harmful algal blooms, reductions in fishery recruitment, and
mass mortality of marine mammals and seabirds (Leising et al.,
2015; Piatt et al., 2020; Suryan et al., 2021). In the summer of 2019,
the GOA was impacted by another marine heatwave, leading to
similarly extreme temperature anomalies (Amaya et al., 2020).
The increasing frequency and intensity of marine heatwaves in
the coming years are likely to coincide with challenges to marine
fisheries’ long-term health (Oliver et al., 2018; Cornwall, 2019).

In addition to thermal variability, there are several sources of
environmental variability that co-occur in the GOA and which
have the potential to overlap, compound, or negate one another
in ways that are still not fully understood (Bopp et al., 2013).

Ocean acidification is one such potential stressor and refers
to the gradual increase in hydrogen ions and consumption of
carbonate ions in marine systems in response to elevated levels
of anthropogenic carbon dioxide entering the ecosystem (e.g.,
Feely et al., 2004; Evans et al., 2014). The GOA, with the naturally
lower concentrations of carbonate ions characteristic of high
latitude marine habitats, is at higher risk for the effects of ocean
acidification as additional losses of carbonate ions can lead to
proportionally larger changes in seawater chemistry than would
be expected in lower latitude systems (Fabry et al., 2009; Mathis
et al., 2011). Additionally, the GOA and Kodiak Island regions are
known to have higher seasonal variability in natural surface pCO2
levels (seasonal amplitudes of as much as 309.8 and 279.4 µatm,
respectively) when compared to open ocean environments due
to upwelling conditions (Chen and Hu, 2019). Some interactions
between sea surface temperature and the carbonate system are
known – for example, carbon dioxide becomes less soluble in
water as water temperature increases – but the full effects are not
yet known in the context of physiological stress to living marine
resources (Mathis et al., 2015).

Recent declines in Pacific Cod stocks are likely connected
to changing thermal conditions in the GOA. Pacific Cod is a
stenothermic species with peak hatch success occurring in 4–
5.5◦C water (Laurel and Rogers, 2020) and optimal juvenile
growth occurring below 13◦C in nursery habitats (Hurst et al.,
2010). It is likely that Pacific Cod, like other stenothermic species,
exhibit stage-specific responses to warming, with potential for
thermal bottlenecks between different life stages (Dahlke et al.,
2020; Rogers et al., 2020). Early life stages may be particularly
sensitive to changes in temperature due to higher metabolic rates
in the embryonic, larval, and juvenile stages (e.g., Finn et al., 2002:
Werner, 2002). Elevated temperatures in the GOA are associated
with high larval mortality of Pacific Cod (Doyle and Mier, 2016)
and a larger size at nursery entry. During the 2014–2016 and the
2019 marine heatwaves, it is hypothesized that a loss of suitable
spawning habitat during heatwave conditions contributed to
declines in Pacific Cod hatch success and consequent older life
stages (Laurel and Rogers, 2020).

Pacific Cod also appear to be moderately impacted by ocean
acidification in the GOA. Elevated levels of carbon dioxide in the
water column during the first two weeks of the larval duration
are associated with suppressed growth, although this trend has
been shown to reverse as larvae grow (Hurst et al., 2019). By
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the juvenile stage, effects of elevated carbon dioxide levels on
growth largely disappear (Hurst et al., 2012). It is hypothesized
that fishes are better able to withstand the effects of ocean
acidification than calcifying marine invertebrates due to their
high metabolism and ability to regulate their inter/intracellular
acid-base balance (e.g., Melzner et al., 2009). However, elevated
levels of carbon dioxide could lead to several indirect impacts
on fishes including behavioral changes (e.g., Williams et al.,
2019); changes in the biochemical structure of prey (e.g., Cripps
et al., 2016); and changes in the abundance of calcifying marine
invertebrate prey (e.g., Lischka et al., 2011). Many of the direct
and indirect impacts of ocean acidification on cod and other
marine finfish species are unknown, and the modest impacts
of ocean acidification observed in the laboratory may indeed
be “significant” when compounded by other environmental
stressors or realized over longer time scales. Here, we do not
account for potential interaction between temperature and ocean
acidification as further studies are needed to better understand
the interactive effects of these two variables on Pacific Cod
early life stages.

Quantifying and visualizing environmental conditions in
space and time can be beneficial in understanding when and
where the Pacific Cod fishery may be most influenced by
changing ocean conditions in the GOA. By viewing the ocean
as a dynamic mosaic of physical and biogeochemical seascapes,
researchers, managers, and other end-users can efficiently
communicate information about environmental conditions in
the ocean through space and time. This approach is known as
dynamic seascape classification (Kavanaugh et al., 2014). Recent
advances have allowed for the dynamic classification of ocean
regions based on multiple biophysical interactions observable
by satellite remote sensing or marine ecosystem models (e.g.,
Kavanaugh et al., 2018). These dynamic classifications have
been used to predict biogeochemical processes (Kavanaugh
et al., 2014), phytoplankton structure and function (Kavanaugh
et al., 2015; Montes et al., 2020), and individual species
occurrences (Breece et al., 2016). The seascape ecology
framework has potential utility for quantifying biological and
human responses to known environmental stressors, including
elevated temperature and ocean pCO2. By applying a dynamic
seascape framework in marine resource management contexts,
Klajbor (2020) established possible novel relationships between
dynamic ocean management principles and socioeconomic
vulnerability in fishing communities.

Large, biophysical time series like those used in a seascape
ecology approach have been classified in space and time
simultaneously using a probabilistic self-organizing map
(prSOM) machine learning algorithm (Kavanaugh et al., 2014,
2016, 2018). The prSOM combines two statistical algorithms,
K-Means and expectation-maximization, and a machine
learning algorithm called the Self-Organizing Map (Kohonen,
1990; Richardson et al., 2003) to approximate the multivariate
distribution of data as a mixture of Gaussians and uniform
distributions (Anouar et al., 1998; Lebbah et al., 2015). The
prSOM algorithm has utility in capturing biological metrics,
such as Pacific Cod growth, in addition to environmental metrics
because it is robust to non-linear relationships between variables
and is topology-preserving. Also, the prSOM algorithm does not

rely on data being identically distributed or independent (i.i.d).
This feature is critical for classifying complex, potentially non-
linear interactions like those found in data from spatio-temporal
time series, which are not independent because the current year’s
classification almost always depends on previous months, years,
and nearby regions.

Here, we introduce “stress-scapes” as a novel machine learning
framework to understand juvenile Pacific Cod’s response to
potential environmental stressors across the GOA ecosystem.
Juvenile Pacific Cod was selected for this project due to
the availability of information and data related to the effects
of temperature and ocean acidification on early life stages.
While there remain many unknown biological responses to
these stressors, both alone and in their potential interactive
effects, we incorporate the most recent available data on this
critical species for this proof-of-concept study. Stress-scapes
incorporate remotely sensed sea surface temperature (SST)
data, pCO2 data, and estimated juvenile Pacific Cod specific
growth rate (SGR) into a prSOM algorithm to identify ocean
conditions that may be stressful to juvenile Pacific Cod across
a broad spatial and temporal scale. The juvenile Pacific Cod
stress-scape presented in this study is not intended as a
comprehensive reconstruction of Pacific Cod growth history
in response to environmental variability in the GOA, but
rather as a novel framework to visualize and classify potential
environmental stress on the species across space and time.
In this way, the stress-scape framework is distinct from an
Individual-Based Model (IBM), which is a biophysical model that
describes fish growth, recruitment, and mortality as dependent
on environmental factors (Hinckley et al., 1996; Hermann
and Moore, 2009; Koenigstein et al., 2016). IBMs are often
coupled with Regional Ocean Modeling Systems (ROMS) and
dispersal models to capture environmental conditions at depth
and track the movement of fish in early life stages through
their environment (e.g., Stockhausen et al., 2019). An IBM for
Pacific Cod has already been developed for the GOA ecosystem
(Hinckley et al., 2019).

In our case study, we develop weekly stress-scapes from 2010
to 2016, including marine heatwave conditions in 2014–2016,
using existing juvenile Pacific Cod laboratory growth models
and remotely sensed environmental data. These stress-scapes
are then evaluated spatiotemporally to determine how well they
capture changing conditions both seasonally and interannually,
including during the marine heatwave event. We then evaluate
the sensitivity of the stress-scape model to the Pacific Cod
SGR input variable to determine the importance of this variable
in influencing the model’s classification. Finally, we compare
the stress-scape model output to otolith-derived growth data
from juvenile Pacific Cod collected from Kodiak Island, AK to
comment on the success of the model in capturing processes
occurring in the field.

MATERIALS AND METHODS

Environmental Data
Sea surface temperature and sea-surface carbonate chemistry
data (pCO2) were collated for the GOA ecosystem between the
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years 2010–2016 (see Supplementary Material: Appendix A for
spatial extent of environmental data). Environmental data were
selected from publicly available modeled, in situ, and remotely
sensed products. The data’s temporal range was selected to
include dates before, during, and after the 2014–2016 marine
heatwave event. Sea surface temperature data were subset from
the National Oceanic and Atmospheric Administration (NOAA)
Optimum Reynolds Interpolation SST V2 product provided by
the OAR/ESRL PSL, Boulder, Colorado, United States (Reynolds
et al., 2002). The product is developed using a combination
of in situ and remotely sensed data, producing weekly means
on a one-degree grid. Associated variance related to each
point was also downloaded and used to calculate total error
related to the stress-scape classification. Sea-surface carbonate
chemistry data were subset from the NOAA National Center
for Environmental Information CSIR-ML6 v2019a Global Sea-
Surface pCO2 product. A smoothed mean monthly pCO2
product was selected from their ensemble mean product that is
calculated using a combination of 6 machine learning techniques.
The smoothed product differs from their raw product, as a
3 × 3 × 3 convolution is applied to the data through time,
latitude, and longitude (Gregor et al., 2019). Mean monthly
values ranged from 262.6 to 469.4 µatm in the study domain.

Only the environmental data from the known spatial and
temporal ranges of Pacific Cod were included in the subsequent
machine learning training and stress-scape visualization,
ensuring that the selected data and resulting stress-scapes were
relevant to juvenile Pacific Cod distribution. Age-0 juvenile
Pacific Cod are distributed in shallow, nearshore habitats,
typically <30 m depth during their first summer (Laurel et al.,
2007, 2009). We used a bathymetric data subset from the
General Bathymetric Chart of the Oceans 2020 Gridded Global
Bathymetry product (GEBCO Bathymetric Compilation Group
2020, 2020) for 30 m and 100 m isobaths to compare habitat
size across both depth distributions. Due to the small size of the
habitat at <30 m depth, we selected 100 m depth as the cutoff
for the juvenile habitat, acknowledging that this represents a
broader habitat range than would be expected for a typical age-0
juvenile Pacific Cod during their first summer and subsequently
may bias our interpretation toward cooler temperatures than
would be experienced in situ (e.g., Laurel et al., 2012). We used
a year-round temporal range for the juveniles in the nursery
habitat to represent both the first summer in the nursery and
overwintering in the nursery. The study’s spatial domain only
includes the GOA, so any data that our filter included from the
Bering Sea were excluded from the training of the prSOM model.
Additionally, there were 5 points where the pCO2 or SST were
not available (Supplementary Material: Appendix B); rather
than attempt to interpolate the data where it was not possible
due to missing data, the value of each pixel was set to NaN.

To account for seasonal variance the monthly z-scores were
computed for each grid point across the GOA for each of the
relevant variables:

zij (θ, φ, t) =
xij (θ, φ, t)− µj (·, ·, ·)

σj(·, ·, ·)

where j is the variable index, i is the observation index and the
represents an average value across the entire GOA through time.

The spatio-temporal z-scores were used to train the prSOM to
compute stress-scape classes across the GOA from 2010 to 2016
(Gregor et al., 2019); hence, the stress-scape classes represent
regions that similarly deviate from the spatio-temporal mean.

Juvenile Pacific Cod Growth Data
Juvenile Pacific Cod temperature-dependent growth data were
obtained from two existing experimental studies: Laurel et al.
(2016) and Hurst et al. (2010). These studies were all conducted
in the laboratory using age-0 juveniles collected from the GOA
population. Similar growth data related to variable pCO2 are
currently unavailable for age-0 juvenile Pacific Cod [although see
Hurst et al. (2019) for earlier life stage responses]. As a proxy, we
used the pCO2 growth response of age-0 juvenile Walleye Pollock
(Gadus chalcogrammus) based on experimental work from Hurst
et al. (2012). While response to ocean acidification is variable
among marine finfish, Walleye Pollock are congeners of Pacific
Cod and share a similar growth response at the age-0 juvenile
stage (Laurel et al., 2016).

A weight-based growth model was used instead of a length-
based growth model throughout this stress-scape analysis to
better align with potential future bioenergetic applications of the
stress-scape to fish bioenergetics. Therefore, a specific growth rate
(SGR) model was used to approximate the percent change of fish
wet weight over time. SGR were calculated from the formula:

SGR = 100
(
eg
− 1

)
where g is the instantaneous growth coefficient obtained from the
equation:

g =
lnWW2 − lnWW1

t2 − t1

where WW1 is the wet weight of the fish at the beginning of the
experiment at time t1, and WW2 is the wet weight of the fish at
the conclusion of the experiment at time t2.

A temperature-dependent growth model was developed using
a general linear model with SGR as the independent variable and
a quadratic temperature term as the dependent variable (Simple
Linear Regression; R2

adj = 0.636; P < 0.0001). Uncertainty in the
model was evaluated using 95% confidence intervals and 95%
prediction intervals.

Juvenile Pacific Cod growth response to ocean acidification
was divided into two potential outcomes: growth under “low”
pCO2 conditions (<1,000 µatm) and growth under "high” pCO2
conditions (>1,000 µatm). These two classifications represent
growth at ambient to moderate pCO2 concentrations (“low”),
and growth at high to very high pCO2 concentrations (“high”),
because juvenile Pacific Cod growth only begins to change as
pCO2 concentrations become very high (e.g., Walleye Pollock;
Hurst et al., 2012). Growth under low pCO2 conditions was
unchanged from the temperature-dependent growth curve and
was represented by the equation:

SGR = 0.059 + 0.290Temp − 0.013Temp2

Growth curves under high pCO2 conditions were calculated
from the percent decrease in growth (−2.3%) observed in
Hurst et al. (2012). Specific growth rates from the temperature-
dependent growth curves were then depressed to reflect the
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percent change in growth that would be expected under elevated
pCO2 conditions. Growth under high pCO2 conditions was
represented by the equation:

SGR = 0.061 + 0.297Temp − 0.013Temp2

Classification of Stress-Scapes
Stress-scapes were classified using remotely sensed observations
of SST; partial pressure of CO2 (pCO2) as an indicator of
the carbonate system; and the specific growth rate (SGR) of
juvenile Pacific Cod. The prSOM approximates the multivariate
distribution of SST, pCO2 and SGR through space and time.
The prSOM was configured with 225 neurons in a 15 × 15
neuron map. Previous efforts in the North Pacific found that
this configuration resulted in sufficiently large number of data
points (e.g., >500) per node (Kavanaugh et al., 2014). The
prSOM algorithm executed 50 epochs in order to give the prSOM
enough time to converge. We applied Hierarchical Agglomerative
Clustering (HAC) to the 225 neurons grouping them into five
individual stress-scapes (e.g., Saraceno et al., 2006; Hales et al.,
2012; Kavanaugh et al., 2018).

The SST, pCO2, and SGR maps of the GOA were interpolated
using bilinear interpolation from 14 × 40 grid points to a
780 × 2340 image to classify stress-scape class boundaries in
the remotely sensed data. The interpolated image was copied
to the Graphics Processing Unit (GPU) memory and classified
according to the trained neurons’ weight vectors and variances
by identifying the stress-scape class most likely to generate
each interpolated value in the GOA. Our unique prSOM
implementation classified the GOA in parallel using the GPU.
Parallel classification is an important distinction because many
visualization methods rely on processing done on the Central
Processing Unit (CPU), but the amount of data we needed
to classify made classification on the CPU impractical. Any
consumer-grade GPU released in the past decade can classify
the entire GOA in a small number of clock cycles (∼1–100
clock cycles) by taking advantage of massively parallel processing.
In contrast, even with a parallel CPU implementation, the
number of clock cycles will range from 300,000 to 1.7 million
clock cycles on most modern processors. There are 365 time
slices, so the classification must be done 365 times; hence the
speedup is substantial.

We selected 5 stress-scape classes from the HAC using the Gap
Statistic (Tibshirani et al., 2001) which suggested 5 classes with 2
well separated classes and 3 less separated classes. Choosing an
optimal number of stress-scapes is difficult as there is no single
metric that can select an ideal number of clusters with certainty,
and often, the statistically significant number of clusters does
not agree with domain expert analysis. For our implementation,
we compared results from three different methods of clustering
evaluation: the elbow method, the silhouette method, and the
Gap Statistic (see Supplementary Material: Appendix C). The
elbow method works by estimating the amount of variance in the
data explained by the clusters, an optimal number of clusters is
chosen by identifying the point in the graph where an increase in
the number of clusters does not provide additional explanation
of the variance. The silhouette method works by estimating the

quality of each cluster and then reporting the average quality
over all the clusters for increasing number of clusters. An optimal
number of clusters can be determined from the silhouette method
by choosing a number K for which the quality of the clusters
is greater than the quality of the K-1 and K + 1 clusters. The
Gap Statistic works by computing the HAC algorithm for an
increasing number of clusters. For each number of clusters, from
1 to 10, we computed the inter-cluster sum of square error, the
average quality of the clusters, and the gap statistic using the
clustGap() function in R.

In order to evaluate the effects of anomalous heatwave
conditions on the stress-scape classification results, classification
results from 2010 to 2013 were compared to classifications during
a known anomaly, the marine heatwave event of 2014–2016,
to more normal ocean conditions preceding the heatwave. In
comparing the classification results, we identified a dominant
stress-scape and examined the qualities of the dominant stress-
scape using a decision tree and a table to records the frequency
and the environmental characteristics of the stress-scapes.
Further details describing our implementation of the prSOM are
provided in Supplementary Material: Appendix C.

Sensitivity Analysis
We trained a second, bivariate prSOM to compare the results of
the stress-scape to a classification that did not include juvenile
Pacific Cod SGR. This bivariate classification allowed us to
evaluate the sensitivity of the trivariate stress-scape framework
to the additional information gained by including the juvenile
Pacific Cod SGR variable in the training process. To account for
the reduced variance in the bivariate prSOM, we used the Gap
Statistic to estimate 4 classes in the bivariate prSOM. We applied
Hierarchical Agglomerative clustering until the 225 neurons
were merged into 4 distinct stress-scape classes. We focused our
comparison efforts on the coastal regions near Kodiak Island.

Pacific Cod Field Growth
Otolith structural analysis of juvenile Pacific Cod collected
from Kodiak Island nurseries is being completed as part of a
related study (Thalmann et al., unpublished data). Therefore,
after developing the lab-based model for juvenile Pacific Cod
SGR, training the prSOM algorithm, and generating the mosaic
of stress-scapes across the coastal GOA, we estimated otolith-
based SGR from these field-collected juveniles to compare with
our stress-scape classifications of growth observed in nearshore
Kodiak Island nursery habitat. This comparison aimed not to
provide a comprehensive analysis of otolith data but rather to
identify a relationship between temporal patterns in the otolith-
based growth rates and temporal patterns in the stress-scapes.
Juvenile Pacific Cod were collected in annual summer beach
seine surveys on Kodiak Island in 2010 and 2012–2016 through
the NOAA Alaska Fisheries Science Center Fisheries Behavioral
Ecology program. Samples were not available in 2011. Pacific Cod
were collected from two shallow (<30 m) embayments along
the northeastern coast of Kodiak Island during successive days
in July each year. Fish were captured using a demersal beach
seine (36 m bag with 5-mm mesh; 1 m × 2.25 m wings with
13-mm mesh), sorted to species, counted, and measured (total
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length, mm). Samples were then frozen (−20◦C) and returned
to Hatfield Marine Science Center in Newport, OR for post-
processing. During post-processing, standard length (mm) and
wet weight (g) were measured, and otoliths were removed for
analysis (Table 1).

Otolith structural analysis was used to generate growth
estimates for field-collected juveniles collected at Kodiak Island.
Otoliths are calcium carbonate structures in the inner ear of
teleost fishes that can be used to determine age and growth of
an individual (Pannella, 1971; Campana and Thorrold, 2001).
Otolith size and body size are highly correlated in Pacific Cod
(DiMaria et al., 2010; Miller et al., 2016), and daily formation
of otolith increments has been validated for Pacific Cod at 10◦C
up to 120 days post-hatch (Narimatsij et al., 2007). Sagittal
otoliths were mounted on glass slides using thermoplastic resin
and polished to expose the core in the transverse plane using
Wetordry paper (800–2000 grit), Buehler lapping film (3–30
micron grit), and alumina slurry (0.3 micron). Polished otoliths
were imaged at 100× and 400× magnification using a Leica
DM1000 compound microscope and a Levenhuk M1000 digital
camera. Final otolith radius and otolith radius from 8 and 16 days
prior to capture were quantified using increment analysis. Daily
increments for these two 8-day growth periods (representing
three weeks of nursery residence at the same 8-day resolution
as the stress-scape model) were counted and measured using
ImagePro Premier software. Each otolith was interpreted three
times with greater than 80% similarity in mean increment width
between reads, and reads were averaged in order to compare
otolith-generated estimates of growth to the stress-scape.

First, we estimated fish length and mass at 8-d and 16-d
prior to capture based on otolith increment analysis, and then
estimated growth in length and mass over these two 8-d periods
for comparison with the 8-d prSOM output. Otolith radius
measurements and fish standard length were log-transformed
to meet parametric assumptions, and a log-linear model with
otolith radius, year, and their interaction as independent
variables and standard length as a dependent variable was
developed (Multiple Linear Regression; R2

adj. = 0.85; P < 0.0001;
Supplementary Material: Appendix D). Using this relationship,
we developed a proportional back-calculation model to estimate
fish size 8- and 16-d prior to capture using the measured otolith
radius from 8- and 16-d prior to capture (Francis, 1990; Campana
and Jones, 1992). Length-based growth of juvenile Pacific Cod in

mm per day was examined for each year and compared to a mm/d
laboratory growth model obtained from the same studies (Hurst
et al., 2010; Laurel et al., 2016) as the laboratory SGR model used
in the stress-scape analysis.

To estimate juvenile wet weight 8- and 16-d prior to capture,
we developed a second log-linear model with standard length
and year as independent variables and wet weight as a dependent
variable (Multiple Linear Regression; R2

adj. = 0.96; P < 0.0001;
Supplementary Material: Appendix D). Wet weight from 8-
and 16-d prior to capture was then determined using a second
proportional back-calculation model using estimated standard
length from 8- and 16-d prior to capture. Juvenile Pacific Cod
SGR in the field was calculated in the same manner as the
laboratory SGR model described above from Hurst et al. (2010)
and Laurel et al. (2016). We utilized weight-based SGR calculated
from otoliths rather than length-based growth estimates for
comparison to the stress-scape.

To compare otolith-generated SGR estimates from the 8-
and 16- day periods prior to capture with the stress-scape, we
determined the dominant stress-scape class for coastal Kodiak
Island at an 8-day resolution in July for each year between
2010 and 2016. Mean SGR from the dominant stress-scape
class was then compared to otolith-generated SGR for that year
using a paired t-test. Otolith-generated growth estimates for each
year were additionally compared to the temperature-dependent
laboratory growth model using a paired t-test. We also compared
otolith-derived growth rates in heatwave conditions in 2014–
2016 to more normal conditions in 2010–2013 using a 1-way
analysis of variance.

RESULTS

Stress-Scape Analysis
Utilizing the prSOM and HAC, we resolved 5 unique stress-
scapes across the GOA that quantified the spatio-temporal
footprint of changing ocean conditions and the modeled specific
growth rate (SGR) of juvenile Pacific Cod. Table 2 describes
the means and standard deviations for the SST, pCO2, and
SGR values of each of the resolved classes. Stress-scape classes
were determined and distinguished semantically through a
decision-tree of z-scores for each input variable, including the
characteristics of each decision mode, which effectively describes

TABLE 1 | Annual sample sizes, average fish size, mean July ocean temperature, mean July pCO2 levels, and ocean conditions for juvenile Pacific Cod captured
annually in July 2010 and 2012–2016 from Kodiak Island, AK.

Year Sample size (n) Fish size (SL; mm) July temperature (◦C) July pCO2 (µatm) Ocean conditions

2010 23 43.35 ± 0.82 10.07 ± 0.15 288.31 Normal

2012 17 41.47 ± 1.17 10.04 ± 0.32 291.00 Normal

2013 19 50.00 ± 1.43 11.64 ± 0.40 295.02 Normal

2014 19 51.79 ± 1.53 12.52 ± 0.23 287.90 Heatwave

2015 9 47.67 ± 1.29 11.69 ± 0.21 300.08 Heatwave

2016 20 62.40 ± 1.16 12.85 ± 0.25 313.57 Heatwave

Samples were not collected in 2011. All samples were collected through the NOAA Alaska Fisheries Science Center (AFSC) as part of the Fisheries Behavioral
Ecology Program.
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TABLE 2 | Mean values for each of the 5 resolved stress-scapes.

SST (◦C) SGR
(

% WW
Day

)
pCO2 (µatm) Count Color

Mean Std Mean Std Mean Std

Class 1 10.42 2.48 1.4 0.16 359.4 33.66 2895

Class 2 6.25 2.38 1.04 0.28 340.3 39.99 1856

Class 3 9.34 2.62 1.34 0.19 346.9 37.12 1515

Class 4 6.36 2.14 1.06 0.24 370.4 38.18 2403

Class 5 7.85 2.25 1.22 0.23 339.1 36.41 1331

Means and standard deviations are included for SST, SGR measured in percent wet
weight per day (%WW/day), and pCO2 concentration values along with a count
of the number of remotely sensed data points belonging to each class and their
corresponding classification color. The stress-scapes were classified based on the
provided environmental data and the decision tree outlined in Figure 1.

how the classes were sorted (Figure 1). Stress-scape classes 2, 3,
4, and 5 (maroon, green, orange, and yellow) were distinguished
by their respective growth rate input variables when they were
decided by node 5. This highlights the non-linear relationship
between SST and SGR. Class 1 (blue) was primarily distinguished
by differences in SST and pCO2.

The stress-scape analysis identified distinct classes that
corresponded to heatwave conditions in 2014–2016 compared
to more normal ocean conditions in 2010–2013 for both
coastal Kodiak Island (Figure 2) and the larger GOA coastal
ecosystem (Figure 3). Animated versions of these figures with
corresponding ribbon plots that show how the stress-scapes shift
and progress through time can be found in Supplementary
Material: Appendix E, Supplementary Videos 1, 2. At both the
Kodiak and regional scales, seasonal and interannual patterns
emerge in the incidence of each of the classes. Classes 2 and 5
contract over time, supplanted by expansions (in space and time)
of classes 1 and 4. Class 2 is the low SST class that seems to be
replaced by high pCO2 in class 4. Class 5, the pre-heatwave late
spring-early summer class, is replaced by class 3, characterized by
high SST, during heatwave years. Class 3 starts appearing earlier
and persisting each year during the heatwave.

In July, stress-scape class 5 (yellow) dominated the areas
around Kodiak Island in 2010 and 2012, whereas stress-scape
class 3 (green) expands both around Kodiak and within the
greater GOA area during heatwave conditions in 2014, 2015,
and 2016. In 2013, stress-scape class 3 and stress-scape class
5 were both present throughout the coastal GOA. Stress-
scape class 3 was characterized by above average temperatures
(10.42 ± 2.48◦C), higher pCO2, concentrations (359.4 ± 33.66
µatm), and high juvenile Pacific Cod SGR (1.40 ± 0.16% Wet
weight/day). In contrast, stress-scape class 5 was characterized
by near average temperatures (7.85 ± 2.25◦C), lower pCO2
concentrations (339.1 ± 36.41 µatm), and near average SGR
(1.22± 0.23% Wet weight/day).

Sensitivity Analysis
The bivariate prSOM, trained on SST and pCO2 but excluding
SGR, resolved four stress-scape classes for the coastal GOA.
Table 3 describes the means and standard deviations for the
SST and pCO2 values of each of the resolved classes used

for the sensitivity analysis. By excluding the SGR variable, the
dominant stress-scape for coastal Kodiak Island was reclassified
to a new stress-scape class 1 (blue), which identifies a mean
SST of 10.42 ± 2.48◦C and mean pCO2 concentration of
359.4 ± 33.66 µatm across all years of analysis. Stress-scape
class 1 of the bivariate model corresponds to stress-scape class
3 of the trivariate-model. Figure 4 shows the dominant yearly
classes for the bivariate prSOM sensitivity analysis near coastal
Kodiak Island during the first week of July 2010 and 2012–
2016 and should be evaluated using Table 3. Stress-scape class
1 is distinguished from the other three classes with its higher-
than-average SST and near average pCO2 concentrations. The
bivariate prSOM groups the two higher temperature classes of
the trivariate dynamic stress-scape together because it lacks the
SGR variable necessary for distinguishing between these classes.
In addition, the bivariate prSOM is unable to distinguish between
heatwave conditions and more normal ocean conditions in the
GOA, with stress-scape class 1 dominant across all six years
of the analysis.

Juvenile Nursery Growth
The dynamic stress-scape underestimated the observed juvenile
Pacific Cod SGR in its classification schema for coastal Kodiak
Island by 39–187% across all six years of the analysis (Figure 5).
Mean July SGR from the dominant stress-scape for coastal
Kodiak Island differed significantly from otolith-derived SGR
for both the last 8 days of growth and the penultimate 8 days
of growth (paired t-test; last 8 days: t5 = 6.72; P = 0.0011;
penultimate 8 days: t5 = 6.94; P = 0.0009). Otolith-derived
SGR were between 10 and 105% higher than the laboratory
growth model across all six years for both the last 8 days of
growth and the penultimate 8 days of growth (paired t-test; last
8 days: t5 = 4.69; P = 0.0053; penultimate 8 days: t5 = 5.39;
P = 0.0029). In contrast, otolith-derived mm/d growth were
between 13% and 79% lower than the laboratory growth model
for both the last 8 days of growth and the penultimate 8 days
of growth (paired t-test; last 8 days: t5 = 6.54; P = 0.0012;
penultimate 8 days: t5 = 5.71; P = 0.0023). Across all years,
field estimated growth rates were similar between heatwave
conditions in 2014–2016 compared to more normal ocean
conditions in 2010–2013 (1-way ANOVA; F1,102 = 0.75; P = 0.39),
highlighting the difference in potential SGR predicted by the
prSOM and the realized SGR observed in the field during
heatwave conditions.

DISCUSSION

The application of seascape ecology methods to the evaluation
of potential environmental stressors across a wide spatio-
temporal scale on juvenile GOA Pacific Cod represents a
new approach to visualize and synthesize the effects of
extreme environmental variability on marine fisheries. Five
dynamic stress-scapes were resolved from 2010 to 2016 that
correspond to unique environmental conditions and growth
responses of juvenile Pacific Cod. Stress-scape identity and
spatial extent changed as a function of time, capturing unique
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FIGURE 1 | The results of the decision tree trained on the output of stress-scape classification using 5-stress-scapes and 4 variables: SST z-score (ZSST), juvenile
Pacific Cod SGR z-score (ZGROWTH) measured in percent wet weight per day (%WW/day), pCO2 concentration (µatm) z-score (ZPCO2), and the month of the
remotely sensed observation (MONTH). Each node of the decision tree represents a decision about the variable labeling the vertex and is labeled with a number. The
root node represents a decision about the monthly z-score of SST. If the pixel’s SST is greater than.562 standard deviations above the mean SST value across the
entire GOA from 2010 to 2016, the left branch is taken; otherwise, the right branch is taken. Note that by including SGR (ZGROWTH) as a classification variable we
can make biologically relevant interpretations of the stress-scape classes that are classified by the right branch of node 1. The bar graph provides the percent of
each class that is classified by each leaf node of the tree.

FIGURE 2 | Dominant yearly stress-scape classes for coastal Kodiak Island during the first week of July 2010 and 2012–2016. Heatwave conditions are present in
2014–2016. Column 1 highlights the dominant stress-scape classes for coastal Kodiak Island. Column 2 is the z-score for SST; Column 3 is the z-score for SGR,
and Column 4 is the z-score for pCO2. The red line marks the time shown in the figure across all years. Dark purple z-scores are below average and yellow z-scores
are above average for that variable. An animated version of this figure can be found in Supplementary Material: Appendix E and Supplementary Video 1.

conditions and responses during the 2014–2016 marine heatwave
compared to the previous cooler conditions. Stress-scapes
captured non-linear biological responses to the environment:
when SGR was included as a variable (in addition to SST
and pCO2) there was a single stress-scape that dominated

during heatwave years that did not dominate prior to heatwave
years. This dominant stress-scape corresponds to observed
elevated growth rates from the otolith data from Kodiak
Island. Even though SGR is a function of SST, including fish
growth as a variable in the stress-scape captures patterns of
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FIGURE 3 | Ribbon plot showing total Stress-scape class area per time slice. Each column represents a single slice through time of the entire GOA. A stress-scape
dominates in time if it persists along the x-axis. For example, in 2016, stress-scape class 1 was spatiotemporally dominant. From 2014 to 2016 stress-scape classes
1 and 4 dominate for a longer period than in 2010–2013. Classes 1 and 4 are coincident with the anomalous elevated growth rates seen in the otoliths data.
A seasonal and interannual pattern emerges in the incidence of each of the classes: The spatiotemporal footprint of classes 2 and 5 contract over time, supplanted
and are replaced by expansions of classes 1 and 4. Class 2, a low SST class, that seems to be replaced by high pCO2 class 4. Class 5, the pre-heatwave summer
class, is replaced by the high SST class 3, which starts appearing earlier and persisting each year during the heatwave. This ribbon plot can be viewed as a video
alongside a map of the GOA in Supplementary Material: Appendix E and Supplementary Videos 1, 2.

growth that are comparable to those derived from otoliths
in situ.

Output from the stress-scape visualization indicated that
juvenile Pacific Cod experienced moderately higher potential
growth during heatwave years compared to more normal
environmental conditions. Accelerated growth is a common
bioenergetic response of teleost fishes to warmer ocean
conditions, with increased temperatures contributing to
increased metabolism and faster growth as long as caloric and
oxygen requirements are adequately met, until an upper limit
above which growth will begin to decline (e.g., Beauchamp,
2009; Thalmann et al., 2020). These results suggest that warmer
temperatures during the juvenile life stage led to faster growth
than would be expected during normal ocean conditions.
However, in contrast with these observed potential growth
rates, Pacific Cod abundance was anomalously low in the

TABLE 3 | Mean values for each of the 4 resolved stress-scapes that were
classified to test the significance of the growth rate variable.

SST (◦C) pCO2 (µatm) Count Color

Mean Std Mean Std

Class 1 11.41 1.84 316.0 19.02 3836

Class 2 6.32 1.34 296.3 16.79 557

Class 3 6.50 1.96 396.4 17.25 3939

Class 4 5.93 1.93 350.7 16.79 1668

Means and standard deviations are included for SST and pCO2 concentrations as
well as the number of remotely sensed data belonging to each class (count) and
corresponding classification color for each of the 4 resolved classes for the bivariate
prSOM sensitivity analysis.

GOA during marine heatwave conditions. Pacific Cod, like
many stenothermic fish species, are likely to experience life
stage-specific thermal bottlenecks, especially in the embryonic
and adult spawner stages where the fish may be particularly
vulnerable to environmental variability (Dahlke et al., 2020).
It has been shown that Pacific Cod hatch success is strongly
correlated with temperature, with hatch success most optimal
at temperatures between 3 and 6◦C (Laurel and Rogers, 2020).
During the 2014–2016 marine heatwave, optimal spawning
habitat was restricted to shallower regions and earlier times
of the year, and this decline in suitable spawning habitat may
have led to widespread reductions in reproductive output.
Those individuals that survived the thermal bottleneck at the
embryonic life stage may have experienced higher growth rates
during the larval and juvenile life stages in warmer conditions,
especially if prey was available and “matched” in time and space
(Laurel et al., 2021). Additionally, juvenile Pacific Cod collected
in Kodiak nurseries were two to four months old by July and
the product of selective mortality. In poor survival years, such
as 2015, slower growing or smaller fish can experience higher
rates of mortality, leaving only the faster growing fish in the
population (Litvak and Leggett, 1992; Sogard, 1997). Thus, the
results from the stress-scape visualization likely do not capture
the full impact of the 2014–2016 marine heatwave on Pacific
Cod simply because it captures only a snapshot of the entire
Pacific Cod life history, but the approach highlights the spatial
and temporal extent of anomalous and potentially stressful
conditions. With the addition of information on prey quantity
and quality and pCO2 and temperature data throughout the
water column, a more comprehensive exploration of the effects
of the heatwave throughout the life history of Pacific Cod, and
potentially other species, would be possible.
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FIGURE 4 | Dominant yearly classes for the bivariate prSOM sensitivity analysis near coastal Kodiak Island during the first week of July 2010 and 2012–2016.
Normal ocean conditions are present in 2010–2013, and heatwave conditions are present in 2014–2016. Column 1 highlights the dominant stress-scape classes for
coastal Kodiak Island. Column 2 is the z-score for SST, and Column 3 is the z-score for pCO2. The final column gives the areal extent of each stress-scape class.
The red line indicates the time slice of the areal extent (see Supplementary Material: Appendix E and Supplementary Videos 1, 2).

FIGURE 5 | Comparison of juvenile Pacific Cod SGR (left panel;% wet weight/day) and mm/day growth rate (right panel) from individuals collected from Kodiak
Island, AK in July 2010 and 2012–2016. Final 8 days of otolith growth prior to capture are represented by dark green triangles, and penultimate 8 days of otolith
growth are represented by light green triangles. Laboratory models are represented by the blue growth curve and blue circles. Specific growth rate from the
dominant stress-scapes in July near Kodiak Island are represented by gold diamonds. Error bars represent standard error. Gray polygons represent confidence and
prediction intervals of the laboratory growth model.
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Otolith-derived SGR rates for field-collected juvenile Pacific
Cod were between 39 and 187% higher than those predicted by
the dominant stress-scape class for coastal Kodiak Island across
most years of the analysis. This pattern highlights a potential
underestimation of the stress-scape machine learning algorithm
in predicting juvenile Pacific Cod growth in the field. The most
parsimonious explanation for this result is that the temperature
data used in the model did not accurately reflect shallow nursery
conditions that often exceed 15◦C in summer around Kodiak
Island (Laurel et al., 2012). However, the laboratory model for
SGR underestimated otolith-derived SGR across most years,
while the laboratory model for mm/d growth overestimated
otolith-derived growth. Growth in mass and growth in length
are related but can reflect differences in energy allocation. For
example, there is some evidence that seasonality can influence
fish growth in the field, with fish adding more length earlier
in the season when conditions are favorable for feeding, and
then adding more mass later in the season to better prepare
for winter conditions (e.g., Hurst and Conover, 2003; Hurst,
2007). Field growth may also exceed laboratory-based growth
models due to a number of in situ processes, including higher
food quality in the field (e.g., Mazur et al., 2007), favorable
conditions in nearshore nursery habitat (e.g., Beck et al., 2001;
Hinckley et al., 2019), and the effects of seasonality on growth
rates, with juveniles feeding more vigorously in summer months
to prepare for winter (e.g., Schwalme and Chouinard, 1999).
In 2014, 2015, and 2012, two heatwave influenced years and
a cool ocean year, respectively, juvenile Pacific Cod exhibited
SGR in the field that were modestly higher than predicted from
the laboratory temperature-dependent growth rate model. We
note that the 2012 cohort of Pacific Cod was the strongest on
record in the GOA since 1977, and growth was likely elevated in
response to particularly favorable ocean conditions in that year
and the production of multiple cohorts of juveniles (Hinckley
et al., 2019). In the unfavorable ocean conditions occurring
during the marine heatwave event in 2014 and 2015, only
the fastest growing individuals were likely to survive to the
juvenile life history stage, inflating the observed growth response
of the survivors (e.g., Ricker, 1969; Litvak and Leggett, 1992;
Moss et al., 2005). The variability between observed growth
rates in the field and classified growth rates in the stress-scape
suggests that future iterations of the stress-scape may benefit
from added parameters related to selective mortality, foraging
conditions, and additional environmental parameters related to
ocean conditions.

In this analysis, we assume that the effects of temperature and
pCO2 on Pacific Cod growth are additive. We do not account
for potential interaction between these two environmental
variables as further studies are needed to elucidate the interactive
effects between warming and ocean acidification on the growth
of Pacific Cod early life stages. We acknowledge that the
potential for interactive effects between temperature and pCO2
on juvenile Pacific Cod growth may increase uncertainty in
stress-scape classification and contribute to the deviation between
Pacific Cod growth observed in the field compared to growth
classified by the stress-scape. In general, early life stages of
marine organisms tend to exhibit an increased sensitivity to

the effects of ocean acidification in the presence of elevated
water temperatures due to a heightened stress response (Harvey
et al., 2013; Kroeker et al., 2013, 2014). However, fishes tend to
be less sensitive than marine invertebrates to increased carbon
dioxide in the water column even in the face of elevated
temperature conditions due to their increased metabolism (e.g.,
Enzor et al., 2017), highly developed acid/base regulatory systems
(e.g., Melzner et al., 2009), and potential for energy reallocation
(e.g., Laubenstein et al., 2018). Studies examining the effects
of elevated carbon dioxide concentrations on the early life
stages of Alaskan gadids (including Walleye Pollock, a congener
of Pacific Cod that shares a similar growth response at the
juvenile stage), show limited impacts to growth response (Hurst
et al., 2012, 2019). Therefore, we expect interactive effects of
temperature and ocean acidification on SGR are likely minimal
for juvenile Pacific Cod.

While previous dynamic classifications of the ocean include
lower trophic level responses to environmental forcing (e.g., chl-
a or carbon; Kavanaugh et al., 2014, 2018), the incorporation
of fish physiology represents a notable revision and test of
non-linear responses of higher trophic levels. Furthermore,
our sensitivity analyses suggests that exclusion of biological
responses results in an overly simple classification model. The
bivariate prSOM (without growth rate) exhibited fewer output
stress-scape classes compared to the full model and grouped
several output classes together. In addition, the bivariate prSOM
was unable to distinguish between heatwave conditions in
2014–2016 and more normal conditions in 2010–2013, with
the dominant class remaining the same across all six years.
Due to the quadratic relationship of Pacific Cod growth to
ocean temperature (Hurst et al., 2010; Laurel et al., 2016),
output classes in the full dynamic stress-scape model were
able to successfully distinguish between similar growth rates
that occurred in response to two different temperature ranges
by classifying them into two separate output classes (classes 1
& 2). By including the biologically relevant growth response
into the stress-scape, we could distinguish temperatures that
were high enough to negatively impact growth rate from
temperatures that were conducive to ideal growth. The utility of
dynamic stress-scapes in capturing non-linear growth patterns
could be expanded to include more complex biological patterns
as indicators of changing ocean conditions, such as those
associated with prey quality and quantity (e.g., Daly et al., 2017),
predation (e.g., Fennie et al., 2020), or metabolic rate (e.g.,
Chung et al., 2019).

Machine learning models show promise in classifying marine
heatwave events because they can generalize to regions of the
ocean where there is limited data by being trained on more
data-rich regions with similar conditions and then using the
model to detect heatwave conditions. While there are several
recent, well-received approaches to classifying marine heatwave
events (e.g., Hobday et al., 2016, 2018; Oliver et al., 2018),
many of these approaches exclude biological response in their
classification schema for marine heatwaves. Our dynamic
stress-scape classification of the GOA, which uses sea-surface
measurements, successfully distinguished between marine
heatwave conditions in 2014–2016 and more historically normal
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ocean conditions in 2010–2013. In general, stress-scape classes
that corresponded to heatwave conditions exhibited higher
SST, moderate pCO2 concentrations, and elevated juvenile
Pacific Cod SGR. Stress-scapes that corresponded to more
normal ocean conditions exhibited moderate SST, lower pCO2
concentrations, and moderate SGR. Dynamic stress-scapes
effectively present the biological footprint of remotely sensed
oceanographic data by characterizing spatio-temporal changes
in the modeled SGR of juvenile Pacific Cod. The stress-scape
framework shows promise in for merging spatio-temporal data
and biological models to understand how heatwave conditions
across a wide spatial and temporal range might affect living
marine resources.

Our methods are not without limitations. The prSOM
algorithm was chosen for this analysis because its topology
preserving nature and its sensitivity to non-linear data.
However, the prSOM implementation does not use k-fold
cross validation to avoid overfitting, which would improve the
classification results. Future efforts would include t-distributed
stochastic neighbor embedding (t-SNE; Maatan and Hinton,
2008), which provides a well-defined “optimal solution,”
lends itself to visualization of higher dimensional data (e.g.,
>3) and thus inclusion of additional in juvenile Pacific
Cod fitness variables. Additionally, HAC can have issues
when the geometry of the data is not flat (as is the case
with the relationship between sea-surface temperature and
growth rate). The DBSCAN (Ester et al., 1996) and OPTICS
(Ankerst et al., 1999) algorithms could replace Hierarchical
Agglomerative Clustering and be used in conjunction with
a prSOM or t-SNE machine learning algorithm to provide
a better stress-scape classification that distinguishes regions
where the temperature is warm enough to constrain growth
from regions where the temperature is conducive to optimal
growth. Our visual results are a preliminary effort to introduce
a visual system. In future work we will consider incorporating
immersive visualization techniques for visual exploration
of the ocean and coordinated multi-view visualization on
the different types and sources of data for decision making.
Efforts to expand on visualization within the fisheries
community suggest interest in developing fast, scalable and
explorative tools for fisheries scientists to understand the
relationship between ocean variables, marine resources, and
the algorithms used to process data from these two domains
(Hermann and Moore, 2009).

Finally, our temperature-dependent growth model does not
incorporate factors like prey quality, prey quantity, ocean
currents, or ocean conditions at depth. Individual Based
Modeling (IBM) and Regional Ocean Modeling Systems (ROMS)
incorporate many of these factors and can be used to generate
a spatial footprint of fish dispersal (Stockhausen et al., 2019).
Information on the dominant dispersal pathways of Pacific Cod
early life stages from an IBM/ROMS model could be paired
with the stress-scapes by developing the duration of residence
in each stress-scape. On a related note, IBM/ROMS models
could be used to improve the data sampling used to train the
prSOM. Currently, remotely sensed data are sampled uniformly
at random at each epoch, where a different random sample

is used at each iteration, but the distribution is uniform. The
IBM/ROMS models could be used to estimate the probability
of a juvenile Pacific Cod encountering potentially stressful
conditions at each ocean pixel. This distribution could be
used to inform the sampling method at each epoch of the
prSOM so that the training data is more likely to represent
the environmental context of the juvenile Pacific Cod. Our
stress-scape framework is not intended as a substitute for an
IBM, and it does not offer a comprehensive reconstruction
of juvenile Pacific Cod growth history in the GOA (but see
Hinckley et al. (2019) for an IBM currently in place for GOA
Pacific Cod). Rather, the stress-scape represents a new way to
visualize changes in both environmental conditions and Pacific
Cod growing conditions before and during a marine heatwave
event. Pacific Cod otoliths are used in the context of this study
to support and serve as a point of comparison to the stress-
scape classification of SST, pCO2, and laboratory-derived juvenile
Pacific Cod SGR.

In summary, stress-scapes offer three new and novel features
relevant to the fields of marine resource management, ocean
ecology and fisheries science. First, stress-scapes are based
on both remotely sensed data and models that approximate
biological response to remotely sensed environmental data.
Second, machine learning models can generalize to regions of
ocean where there is limited data by being trained on data
that share similar conditions. Third, stress-scapes use machine
learning algorithms that train on spatially relevant data, in this
case based on temperature-growth models to approximate the
growth rate of juvenile Pacific Cod. This produces an output
that is potentially relevant for management in multiple fields
and at multiple spatial and temporal scales. Environmentally, the
stress-scapes are useful metrics that can benefit ecosystem-based
and dynamic approaches to management of marine resources
(Kavanaugh et al., 2016). From a management perspective, the
biological relevance of the stress-scapes can be used to trace or
even forecast potentially stressful conditions for a focus species.
Downstream effects on socioeconomic conditions of resource
users could also be identified by aligning the occurrence and
longevity of stress-scape classes in space and time with economic
indicators and extraction data. The process is extremely flexible
and can handle large amounts of many types of time series data,
furthering its utility.
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with all applicable institutional and national guidelines at
the time that the study was conducted; all work followed
American Fisheries Society policies on the Guidelines for Use of
Fishes in Research (https://fisheries.org/docs/policy_useoffishes.
pdf) and AVMA (American Veterinary Medical Association)
Guidelines on Euthanasia (olaw.nih.gov/sites/default/files
/Euthanasia2007.pdf). There was no formal ethics review of this
study because NOAA National Marine Fisheries Service does not
have an Institutional Animal Care and Use Committee (IACUC)
or an ethics approval processes for research on fishes and, at
the time of these collection (2010–2016), OSU was not involved
in the research.
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