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Abstract

In dynamicsituationmodelingwe do not know
at designtime all theentitiesin a situation,their
types,or the relationshipsin which they partici-
pate.We presentastatusreportonJPF, aFrame-
basedprobabilisticrepresentationandreasoning
systemwith embeddedsupport for hypotheses
aboutthestructureof a situation,includingexis-
tence,type,andassociation(relational)hypothe-
ses.We describetheexternalrepresentationand
its mappingto a Bayesiannetwork. We close
with a summaryof our experiencein usingthis
systemon two largeDARPA projects.

1 Introduction

1.1 Task

Our focus task is dynamicsituationmodeling. Given an
input streamof reportsfrom multiple sensorsof multiple
types,the task is to infer the entitiespresent,their states,
relationships,andactivities. For example,given an input
streamof reportsfrom network intrusiondetectionsystems
andintelligencesources,arewe undercyberattackandif
soby whom,with whatintent?This taskis essentiallycon-
structive. It is not possibleto pre-specify, at a sufficient
level of detail,asingleBayesiannetwork thatencompasses
all possiblesituationsonemightencounter. Forexample,in
thecyberattackdomain,onemaybesimultaneouslyunder
multiple attacksform severalsources,with varyingobjec-
tives. An unknown numberof cyber agents(e.g. viruses,
trojans)maybepresentononeor morehostsin oursystem,
organizedinto teamsto pursueany of anumberof possible
objectives.

The task is relatedto many other “understanding”tasks.
We briefly exploretherelationshipto three:diagnosis,im-
age understanding,and plan recognition. It is different
from eachin significantways.Diagnosistypically assumes
known entitiesandstructure.Hereweknow only theentity

typesthatmightbepresent,andhow they mightberelated.
For example,we modelthedomainfactthatanexfiltration
(removalof data)attackonaclassifiedsiteis mostlikely to
becarriedout by a highly skilled attacker. We canusethis
factwheneverwesuspectanattackon a classifiedsite.

Image understanding,like situation assessment,focuses
on hypothesizingentitiesand relationshipsamongthem.
However, for image understandingthe relationshipsare
typically staticgeometricones,whereasin situationassess-
mentthe relationshipsareprimarily functional. Using the
exampleabove,theagentof anattackis in a functionalre-
lationshipto theattackitself.

Finally, theabove examplemayseem,andis, very similar
to planrecognition.However, while planrecognitionusu-
ally startsfrom known entities,we get only indirect evi-
denceaboutthepossibleexistenceof entitiesin asituation.
We can lack prior knowledge,not only aboutthe attacks
underway, but alsoabouttheagentswho executethoseat-
tacks,bothhumanandcyber, aswell asthe resourcesuti-
lized,suchashostsandnetwork infrastructure.

1.2 Research Program

We havedevelopedJPF, a probabilisticframe-basedrepre-
sentationlanguage,for usein thesedynamicsituationmod-
eling tasks.JPFprovidesthreemajor facilities,thefirst of
which is a languagefor constructingsituation-independent
modelsof a domain. Thesemodelscontain information
abouttypesof entities(for example,“hostswith classified
informationareusuallyhardto attack”),but donot referto
specificentitiesat all.

Thesecondmajorfacility JPFprovidesis asetof structural
uncertaintyprimitives. Taken together, a domainmodel
andthesestructuraluncertaintyprimitivesconstitutea lan-
guagefor constructingsituationmodelsin thatdomain.Fi-
nally, JPFproducesthesituationmodelin Bayesnetform.

Our initial hypotheseswere that: (1) the domainmodel-
ing languagewould have theexpressivity neededto model
interestingdomains;(2) the situationmodelinglanguage,



comprisedof the domainmodeland the structuraluncer-
tainty primitives, would permit reasonablyparsimonious
constructionof dynamicsituationmodels;and(3), the re-
sulting Bayesnet would be computationallytractible for
moderatelylargesituations.

1.3 Representational Requirements

The task of situationassessmentaswe have describedis
constructive,andthereforeourrepresentationmustbecom-
positional.We usea two-level representation,in which en-
tities and relationshipsin a situationare describedas in-
stancesof generictypes. Much of the knowledgeabout
types,and significantelementsof reasoningaboutsitua-
tions, is taxonomic. This suggeststhat our generictypes
shouldexist in a typehierarchy. Finally, we usuallyknow
more than just the type of an entity - associatedwith an
entity type is a setof attributes. The particularsetof at-
tributes,andexpectationsaboutvaluesthoseattributescan
take,arebothimportantelementsof domainknowledge.

Domainknowledgeof this sorthastraditionallybeencap-
turedin object-orientedand,moregenerally, frame-based
representationalsystems,andsowe have adoptedthegen-
eral syntaxof frame-basedsystems.So, for example,we
have framesfor various types of cyber attack, different
typesof attackingagent,andso on. However, while use-
ful, standardframe-basedrepresentationsarenotsufficient.
Situationassessmentis a taskin hypotheticalreasoning.In
particular, our representationmustbe ableto supportfour
typesof hypothesesaboutthe structureof constructedsit-
uations,existence,type,association,andidentity hypothe-
ses.

Existence hypothesesarenecessarybecauseweoftenhave
indicative, but not definitive, evidenceaboutthe presence
of an entity or activity. For example,a softwareupgrade
event may introducea maliciousagentalongwith the up-
gradedsoftware.An attemptto contactaninvalid IP num-
beron our network maybepart of a network mappingat-
tack. However, until furtherconfirmatoryevidencecauses
acceptanceof theexistenceof theagentorattack,it remains
hypothetical.

Type hypothesesarenecessarybecauseinitial information,
in addition to being uncertain,is partial. A statusreport
mayimply no morethanthatwemaybeunderattack.Yet,
asmentionedearlier, muchof the informationavailableto
confirmor rejecttheattackhypothesisis underspecificat-
tack types. Becausethe taxonomyis large, it is computa-
tionally intractableto considerall possiblesubtypesof an
abstracttype like “attack” simultaneously. Rather, there
is considerableexpertisein how oneexploresthespaceof
possibletypesfor anentityor activity.

Association hypothesesarenecessarybecauseentitiesand
activities do not exist in isolation. When we hearof an

attack,we surmisepossibleattackers, attack-targets,ob-
jectives, and so on. Note theseare not typical random
variablesbecausetheir domainsare not, in general,pre-
enumerated.Rather, a typeis specifiedin advanceandas-
sociationhypothesesdraw specificinstancesof thattypeto
addto a domain.

Identity hypothesesarenecessarybecauseit is possiblefor
multiple existencehypothesesto refer to a singlething-in-
the-world. For example,wemayonly laterrealizethattwo
separateattackhypotheses,eachcreatedfrom separateevi-
dence,in factbothdenotethesameactualattack.We have
not yet implementeda mechanismfor identity hypotheses
andwill notdiscussthemfurther.

In summary, our representationalrequirementsincludethe
ability to model entity and relationshiptypes,their taxo-
nomic relationshipsand their attributes. In addition, we
requirethe ability to form structuralhypothesesaboutthe
existence,type,andassociationof instancesof theseentity
typesin a particularsituation.

2 Domain Description

In this section,we describethe modelinglanguage.The
modeling languageis basedloosely on frames,a popu-
lar knowledgerepresentationaproach,and is augmented
with variouswaysto constructstructuralhypotheses.The
semanticsof the modelinglanguageis understoodby the
Bayesnetit createsfor theinstantiatedframes.

2.1 Frames

The fundamentalmodeling unit is the frame. A frame
definesgeneralpropertieshold amonga classof objects,
called frameinstances. Framescontainslots, roughly, at-
tributes.Eachslot canhave a numberof facetsdefinedon
it.

Someof thesefacetnamesare reserved words,and their
valuesdefinetheprobabilitymodelover instancesof frame
definitions.

Framesexist in a lattice(i.e.,multiple inheritance),andin-
heritall slots(andfacetsdefinedonthem)definedin parent
frames.

2.1.1 Frame Example

Figure1 shows a partof the taxonomyof attacksin cyber
battlefieldswehavedevelopedfor DARPA InformationAs-
suranceCyberCommandandControl (IA/CC2) program.
Simplified versionof Attack andCyberAttackframedefi-
nitionsareshown in Figure2.

The Attack frame definestwo slots called target and tar-
getStatus. Theseslots are also available in CyberAttack
becauseit is a subframeof Attack asspecifiedby an“isa”
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Figure1: Attack taxonomyfor IA/CC2.

frame Attack isa Activity
slot target
facet domain = Agent
facet distribution = UniformDist

slot targetStatus
facet domain = [Inopera-

tive, Operative]
facet parents = [target.status]
facet distribution =

function x,y {
if x==y then 1 else 0 end

}
end;
frame CyberAttack isa Attack

slot confidentiality
facet domain = [True, False]
facet distribution = [0.5, 0.5]

slot integrity
facet domain = [True, False]
facet parents = [confidentiality]
facet distribution =

function conf {
if conf==True then [0.6, 0.4]

else [0.5, 0.5] end
}

end;

Figure2: AttackandCyberAttackdefinitions.

clause.CyberAttackaddstwo slots,calledconfidentiality
and integrity, which representthe objectivesof the cyber
attack,thatis, whattheattacktriesto compromise.

The“domain” facetdefinesthedomainof aslot. It canbea
finite setasin thetargetStatus,confidentiality, andintegrity
slots,or canbea frameasin thetargetslot, in which case,
the slot cancontainany instanceof that frame. We call a
slot with a framedomaina referenceslot.

The “distribution” facetdefinesa probability distribution
over the slot domain. The distribution canbe specifiedin
variousways. The distribution for the confidentialityslot
is specifiedby avectorof probabilitynumbers,andthedis-
tributionsfor thetargetStatusandintegrity slotsarewritten
asfunctions.

If thereis a “parents”facet,thenthe distribution facetde-

finesa conditionalprobability table(CPT)conditionedby
thespecifiedparentslots.For example,theintegrity slot in
the CyberAttackframeis conditionedby the confidential-
ity slot in the sameframe. Its distribution saysthat if the
cyberAttackattackstheconfidentialityof thetarget,thenit
is morelikely thatit alsoattackstheintegrity of thetarget.

2.1.2 Mapping To Bayes Nets

We performinferenceby mappinga situationrepresented
by asetof frameinstancesinto aBayesnet.

Whenaframeis instantiated,oneBayesnodeis createdfor
eachuncertainslot definedin the frame. Figure3 shows
theBayesnetfragmentfor aninstanceof CyberAttack,A.

A.confidentiality A.integrity

Figure3: Bayesnetfragmentfor a CyberAttackinstance.

2.2 Structural Hypotheses

The fundamentalstructuralhypothesisis that something
existsin theworld. We termthis anexistencehypothesis.

Given that an entity exists, the next questionwe needto
answerto defineits representationis its type, that is, its
locationin theframetypelattice. Typehypothesesarehy-
pothesesaboutthetypeof anentity. We currentlysupport
only subtypehypotheses,that is, hypothesesthatanentity
currentlymodeledat one level of the type lattice may be
modeledasanimmediatesubtype.1

Finally, muchof interestin adomainconcernstherelation-
shipsamongentities.Associationhypothesesarehypothe-
sesaboutthevalueof a slot whosedomainis drawn from
a classof frame instances.Associationhypothesescome
in two flavors: one-to-one(e.g.,organizationbehinda par-
ticularattack)or one-to-many (e.g.,thesetof missionsthis
web server is supporting).A slot with one-to-oneassoci-
ation is calleda referenceuncertaintyslot, anda slot with
one-to-many associationis calledaset-valuedslot.

Path expressionsareusedto defineparentsby referencing
throughassociations.An examplepathexpressionappears
in theparentfacetin thetargetStatusslot in Figure2,which
refersto thestatusslotsof theAgent instancestoredin the
referenceuncertaintyslot called“target”.

1We assumethat eachthings-in-the-world is correctly mod-
eledasa singleleaf type,we justdon’t know whichone.



2.2.1 Implementing Existence

The implementationof basicexistenceis pretty straight-
forward. Each hypotheticalframe instancehas an “ex-
ists” nodewith domain

�
“Context.In” � “Context.Out” � . All

nodesareconditionedby theexistsnode,andContext.Out
is addedto the domainof all nodesso that if exists node
is Context.Out all conditionednode also becomesCon-
text.Out.Context.Out is normallyinvisible to theuser.

For example,if theexistenceof aCyberAttackinstance,A,
is hypothetical,anexistsnodeis created,andit conditions
all nodesfoundin theframe.(SeeFigure4.)

A.confidentiality A.integrity

A.exists

Figure4: Bayesnet fragmentfor a hypotheticalCyberAt-
tackinstance.

2.2.2 Implementing Subtype

Subtypehypothesesaremodeledby addingasubtypenode
to theBayesnetfor theparentframeinstance,whichcondi-
tionstheexistsnodesin thechild instance.Theconditional
probabilitytable(CPT)of thechild existsnodeis definedto
ensurethatthechild instanceexistsif andonly if theparent
instanceexistsandthesubtypenoderefersto theparticular
child.

Thereis animportantissueintroducedby subtyping:What
do priors meanif they canbe redefinedat any level? We
taketheprior specifiedin any frameotherthana leaf frame
to bethedefaultprior for child frames.Theactualprior for
anon-leafframe-instanceis theexpectationover thepriors
of its instantiated(throughsubtypehypotheses)children.

The CPTsof nodesfor slots in the parentencodethe ex-
pectationoverthecorrespondingnodesin thechildren.For
example,let frameF have two children,C1 andC2. Then
thesystemgeneratesthefollowing CPTfor theslot Sof P:

P � F � S�F � subtype� C1 � S� C2 � S���	
1 if F � subtype� Ci andF � S � Ci � S for 1 
 i 
 2
0 otherwise.

This CPTcanbereadilygeneralizedfor caseswith n chil-
dren.

Figure 5 shows the Bayesnet fragmentfor this example
subtyperelation,includingexistsnodes.

F.subtype

F.S

F .exists

C1.exists C2.exists

C1.S C2.S

Figure5: Bayesnetfragmentfor thesubtypeexample.

2.2.3 Implementing One-to-One Association

We usea simple“switch” or “multiplexor” representation
for the one-to-oneassociation.For example,considerthe
TwoStageCAttackframedefinedin Figure6.

frame TwoStageCAttack isa CyberAttack
slot 1st
facet domain = CyberAttack
facet distribution = UniformDist

slot 2nd
facet domain = CyberAttack
facet distribution = UniformDist

slot integrity
facet domain = [True, False]
facet parents = [1st.integrity,

2nd.integrity]
facet distribu-

tion = T.S.IntegrityDist
end;

Figure6: A partof definitionof TwoStageCAttackframe.

In this frame, there are two referenceuncertaintyslots
called “1st” and “2nd”, both of which refer to a Cyber-
Attack. The third slot, “integrity” is conditionedby the
integrity of two CyberAttacks.Let f =T.S.IntegrityDist be
thefunctionthatspecifiestheCPT, thatis, thefunctionthat
returnsaprobabilitynumbergiventheintegrity valueof the
first attack,thesecondattack,andthetwo-stageattack.

Supposethat T is an instance of TwoStageCAttack,
and its first stage can be one of CyberAttack in-
stances

�
A1 ��������� Am � , and its secondstagecan be one of�

B1 ��������� Bn � . Then, the systemgeneratesthe following
CPTfor theintegrity (I ) of T:



P � T � I �T � 1st� T � 2nd� A1 � I �������� Am � I � B1 � I ��������� Bn � I ���
f � Ai � I � B j � I � T � I � if T � 1st � Ai andT � 2nd � B j

for 1 
 i 
 m and1 
 j 
 n

TheaboverepresentationrequirestheCPTof sizeexponen-
tial in thenumberof references.In orderto avoid thisexpo-
nentialexplosion,wefactortheaboveCPTmultiplicatively
usingLocalExpressionLanguage[D’Ambrosio,1995].

Following [Takikawa andD’Ambrosio, 1999], we usethe
following notationfor generalizeddistributions:

G � X1 ��������� Xm �Y1 ��������� Yn ��
f � X1 ��������� Xm � Y1 �������� Yn �������

whereXi is aconditionedvariable,Yj is aconditioningvari-
able,and f is a densityfunctionspecifyingactualnumeri-
cal probabilities.

Using Local ExpressionLanguage,the above CPTcanbe
factoredasfollows:

P � T � I �T � 1st� T � 2nd� A1 � I �������� Am � I � B1 � I ��������� Bn � I ���
m

∏
i � 1

n

∏
j � 1

G � T � I � T � 1st� T � 2nd� Ai � I � B j � I�
fi j � T � I � T � 1st� T � 2nd� Ai � I � B j � I �����

where

fi j � T � I � T � 1st� T � 2nd� Ai � I � B j � I ���	
f � Ai � I � B j � I � TI � if T � 1st � Ai andT � 2nd � B j
1 otherwise.

In this representation,eachgeneralizeddistribution con-
tainsonly onereferencefor eachparent,soits sizeis fixed
no matterhow many referencesthereare in the reference
uncertaintyslot,avoiding theexponentialexplosion.

Notethatthesameoptimizationis applicableto thesubtype
hypotheses.Also notethatany inferencealgorithmcanbe
easilyextendedto handlethis multiplicative factorization
of multiplexors.

2.3 Roles

It is often important to placeexpectationson slot-fillers.
For example,theattacker in asmurfattackis usuallymod-
eratelysophisticatedtechnologically. Werepresentmostof
theseasconstraints, thatis, assoft observationsonderived
values. For example, the above might be representedas
shown in Figure7.

In this frame, the attacker slot is a referenceuncertainty
slot,which refersto a possibleattacker Agent. Theattack-
erLevel slot representstheattacker’s technologylevel. It is
inferredfrom thetechLevel slot of theattacker throughthe
distribution functionwhich encodestheidentity matrix.

frame SmurfAttack isa CyberAttack
slot attacker
facet domain = Agent
facet distribution = UniformDist

slot attackerLevel
facet domain = [Super, Good, Bad]
facet par-

ents = [attacker.techLevel]
facet distribution =

function x,y {
if x==y then 1 else 0 end

}
facet observation = [0.2, 0.6, 0.2]

end;

Figure7: Thedefinitionof SmurfAttackframe.

Themostimportantpart is theobservationfacetof theat-
tackerLevel slot,whichputsasoftobservation,represented
asa likelihoodvector, to the attackerLevel nodeof Smur-
fAttack instances.In this case,thesoft observationfavors
“Good” technologylevel.

The Bayesnet for an exampleSmurfAttack instance(S)
with two attacker associationhypotheses(A1 and A2) is
shown in Figure8.

S.attacker

S.atkLevel

S.exists

A1.exists A2.exists

A1.techLevel A2.techLevel

observed

Figure8: Bayesnetfragmentfor theSmurfAttackexample.

This representationprovidescompositionality, is mediated
by theexistencesof theparticipatingobjectsandtheir par-
ticipation in associations,andavoidsany possibliityof in-
troducingdirectedloopsin theBayesnet.

2.4 One-to-Many

We use a “SetMember” frame to build a set. SetMem-
berframesrepresenta linkedlist of memberswhosemem-
bershipis conditionedby a membershipslot, andarecus-
tomizedfor eachuse. For example,Figure 9 shows the



AttackerSetMemberframethat is customizedto represent
a setof attackers.

frame AttackerSetMember
slot member
facet domain = Attacker

slot next
facet domain = AttackerSetMember

slot membership
facet domain = [True, False]
facet distribution = [.5, .5]

slot levelConstraint
facet domain = [Valid, Invalid]
facet parents =

[membership, member.techLevel]
facet distribution =

function membership, level {
if member-

ship==True && level!=Bad
then Valid
else InValid end

}
facet observation = [.9, .1]

slot superCount
facet parents =

[membership, member.techLevel,
next.superCount]

facet distribution =
function member-

ship, level, nextCount {
if member-

ship==True && level==Super
then nextCount+1
else nextCount end

}
end;
frame EmptyAttackerSetMember

isa AttackerSetMember
slot superCount = 0

end;

Figure9: Framesfor attackersets.

Thefirst threeslotsareessential:The“member”slotpoints
to anactualmember;the“next” slotpointsto theremaining
set;andthe“membership”slot representsahypothesisthat
this memberbelongsto this set.

This representationpermitsexpectationsto beplacedboth
on the set itself (e.g., cardinality constraints)and on set
members.It is easyto specify, providesa placeto gather
role restrictionsfor a ont-to-many slot, anddid not require
any extensionto the underlyingimplementation.It does,
however, suffer the major disadvantageof fixing the or-

der in which themembersof thesetarerepresentedin the
Bayesnet.

The “levelConstraint”slot is an exampleof a constraint
placedon all members.It statesthatattacker’s technology
level shouldnot bebad. This constraintis conditionedby
the membershipslot so it is effective only if this attacker
is indeeda memberof this set. Note that the constraintis
soft, thatis, a smallamount(10%)of leakageis allowed.

A constrainton the setitself, suchas“The numberof su-
per attackersshouldbe at leastone,” canbe placedusing
a slot thatsummarizesthe condition(thenumberof super
attackers)andputting a constrainton that condition. The
“superCount”slot in AttackerSetMemberis anexampleof
a summaryslot thatcountsthenumberof superattackers.

3 Experience To Date

We have usedJPFprimarily aspart of an automatedsys-
temfor constructingsituationmodels,which is lessmature
thanJPFandwill bedescribedhereonly verybriefly to pro-
vide background.Our dynamicsituationmodelingengine
is, loosely, a blackboardsystemwhich usesthecurrentset
of JPFframeinstancesas its blackboard.Changesto the
frameworld – the currentsetof frameinstances– trigger
domain-specificmodulesresponsiblefor performingmodel
constructionactions,typically thecreationof structuralhy-
potheses.For example,a modulethatwatchesfor reports
of pings to invalid addressesmight hypothesize:(1) that
an existing attackmight well accountfor this report,and
socreateanassociationhypothesisbetweentheattackand
thereport;or (2) thata new attackis neededto explain the
report,andso createan existencehypothesisfor the new
attackandanassociationhypothesislinking theattackand
report; or (3) both possibilities. In generalthe modules
implementcoarselocal decisionpolicies aboutstructural
hypothesiscreation. The set of constructionsuggestions
generatedby all triggeredmodulesis thengloballyfiltered,
takinginto accountbothcompetinghypothesesandthecur-
rentmodelcomplexity.

We areusingthis systemon two DARPA projectsinvolv-
ing dynamicsituationmodeling.A characterizationof our
work to dateon thetwo projectsis shown in Table1.

In this table,Observationsincludesbothhardandsoft ob-
servations,Computationinformationis for computationof
all marginals,andLargestTbl is specifiedin thenumberof
entries.As canbeseenfrom this information,thenetworks
stay sparseand computationallytractablefor moderately
largesituations.Exploitationof localstructureasdescribed
earlier is essentialfor this result. The larger network is
intractablewhenthe type andassociationexpressionsare
flattenedinto simpleconditionaldistributions (the largest
table:2 � 3 � 1015 entries).

JspiScript JPFincludesits own scriptinglanguagejspiS-



Measure DDB CC2

Frames 138 45
slots 359 168
facets 137 168
Typical Run
FrameInstances 192 111
ExistenceHypotheses 85 29
TypeHypotheses 80 0
AssociationHypotheses 170 219
Nodes 1016 840
LocalExpressions 2258 1438
Observations 228 217
Computation
time in seconds 44.9 22.7
# mults 22 � 106 2 � 8 � 106

LargestTbl 373,248 972

Table1: Examplemodelcharacteristics.

cript, a completeprogramminglanguagewith additional
featuresfor defining and manipulatingdistributions, lo-
cal expressions,Bayesnets,frames,andframeinstances.
Framedefinitions(includingall examplesin thispaper)are
written in jspiScript,and its general-purposefeaturescan
beusedasa macrofacility. JspiScriptis usedto write test
suitesaswell assomedomain-specificmodulesfor thedy-
namicsituationmodelingengine.We useit heavily in in-
teractive modefor testinganddebugging.Finally, a frame
definitionmaycontain,in placeof aCPT, ajspiScriptfunc-
tion definingtheCPTashasbeenseenin theexamples.We
have found the scriptinglanguageto be an essentialcom-
ponentof large-scaleknowledgeengineering.

Issues Onefactwhich thecurrentversionof JPFdoesnot
representwell is coreference.Supposewe have agentsA1
andA2, andoneof them(but we do not know which) is
the sourceof a CyberAttackC1. As describedabove, we
modelthis by addingA1 andA2 to the (previously empty)
domainof C1.source.We thenlearnof a secondCyberAt-
tack,C2, andwe determinethatC2 hasthesamesourceas
C1. This factis lost if wesimplyaddA andB to thedomain
of C2.source.

We have not yet determinedhow we will extend JPFto
handlethis kind of information. Onepossibility is to use
a referenceuncertaintyslot asa placeholderfor the frame
instanceto which it refers,so thatwe couldput C1.source
in thedomainof C2.source.

Anotherpossibilityweareexploringis to defineanew kind
of frameinstance,the“referenceinstance”.A referencein-
stancewould have the sameslotsasa normal instanceof
the sameframe, plus an extra referenceuncertaintyslot.
The domainof this extra slot would contain referentin-
stances,andtheCPTsfor theotherslotswould encodeex-
pectationsoverthecorrespondingslotsin thesereferentin-

stances.(Referenceinstancesareconnectedto their refer-
ent instancesin muchthe sameway that parentinstances
areconnectedto their child instances.)In our example,we
would createa referenceagentinstanceHref, with referent
instancesH1 andH2, andwe would put Href alonein the
domainsof bothC1.sourceandC2.source.

A secondissuewe have begun to explore is identity. As
mentionedearlier, it is not unusualto createtwo existence
hypothesesfor what later is discovered(or hypothesized)
to be the sameobject. It is a simplematterof program-
ming to make thecategoricalassertionthatthis is thecase.
It is more problematicto constructa hypothesisthat this
is so, andwe are currently exploring alternateBayesnet
mappingsfor identity hypotheses.

4 Related Work

Mahoney andLaskey [1998] have written aboutconstruct-
ing situationmodels. Our work is consistentwith theirs,
but emphasizesthe engineeringaspectsof automatically
constructingandevaluatinglarge-scalesituationrepresen-
tations. Pfeffer et al. [1999] reporton a frame-basedsys-
temverysimilar in syntaxto ours.In fact,muchof oursyn-
tax is unashamedlystolenfrom SPOOK.JPFdiffers from
SPOOKin its emphasison providing facilitiesfor hypoth-
esizingaboutandmanagingthestructureof asituationrep-
resentation.

Earlier work on knowledge-basedmodel constructionin-
cludes work by Breese[1987], Goldman and Charniak
[1990], andWellman[1990]. JPFis mostsimilar in spirit
to GoldmanandCharniak’s work. As with SPOOK,a key
differenceis our focus on structuralhypotheses.Breese
focusedon the control of situationconstruction,andused
backward-chainingrule-basedmethodsto drive construc-
tion. This paperhasnot focusedon structuralhypothesis
management,but, asalludedto earlier, we useblackboard-
style control with explicit decision-theoreticmodelingof
thecost/benefitof eachhypothesismanagementaction.Fi-
nally, Wellman,like us,focusedon theneedfor hierarchi-
cal refinementduring the problemsolving process.How-
ever, his work wasperformedin a qualitative probabilistic
frameworkandassumedaknownstructure,whereasweuse
traditional discretedomainsand must hypothesizestruc-
ture.

5 Conclusions

We have describedJPF, a probabilisticframe-basedrepre-
sentationlanguagefor dynamicsituationmodeling. Our
initial hypotheseswerethatsucha system:(1) would have
the expressivity neededto model interestingdomains;(2)
would provide the primitives neededto effectively con-
trol the potentialcombinatorialexplosion inherentin dy-
namicsituationmodeling;and(3) would becomputation-



ally tractablefor moderatelylargesituations.

Our experienceto dateprovidesaffirmative answersto the
first two questions.First, while expressivity is partially a
subjectivemeasure,we havebeenableto successfullyper-
form initial modelingin two large-scaledomains.Second,
JPFhasservedastherepresentationandreasoninglayeron
which we have constructedan enginefor dynamicsitua-
tion modelingcurrentlyin useon thosesametwo projects
(separatepapercurrentlyunderdevelopment).

Ourexperiencewith respectto thethirdhypothesisissome-
what more qualified. While we have reachedour initial
goalof modelingsituationsinvolving thousandsof nodes,
it is clearthatnew approacheswill berequiredto reachour
goalof hundredsof thousandsof nodes.Webelieveamore
continual,incrementalapproachto inference[Horvitz99],
incorporatingnotionsof locality, granularity, andprecision,
will beneededto build a truly scalablesystem.
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