Mixing

Oregon State University
Mike Bailey
mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Getting a Mixing Parameter

// create a value of 0. or 1. from the value of x wrt edge:
float t = step(float edge, float x);

// create a value in the range 0. to 1. from the value of x wrt edge0 and edge1:
float t = smoothstep(float edge0, float edge1, float x);

Using that Mixing Parameter to Blend Two Quantities

// use the returned value from step() or smoothstep() to blend value0 to value1:
T out = mix(T value0, T value1, float t);

where T can be just about any type: float, vec2, vec3, vec4, ...

out = (1.-t) * value0 + t * value1

One would expect 0.0 ≤ t ≤ 1.0, but that doesn’t have to be true. After all, these are just numbers.

For a fun exercise with this, go back and change the morphing slider to go beyond 0.0-1.0.

As we will see later, there are really good uses for going beyond the range 0.0-1.0.

“SmoothPulse” in a Fragment Shader

in float vX, vY;
in vec3 vColor;
in float vLightIntensity;
uniform float uA;
uniform float uP;
uniform float uTol;
const vec3 WHITE = vec3(1., 1., 1.);

void main() {
 float f = fract(uA*vX);
 float t = smoothstep(0.5-uP-uTol, 0.5-uP+uTol, f) - smoothstep(0.5+uP-uTol, 0.5+uP+uTol, f);
 vec3 rgb = vLightIntensity * mix(WHITE, vColor, t);
 gl_FragColor = vec3(rgb, 1.);
}
Fun With One

Moral: There are many ways to turn \([0.0, 1.0]\) into \([0.0, 1.0]\).

Sidebar: Why Do These Two Curves Match So Closely?

The Taylor Series expansion of \(y = \sin\left(\frac{\pi}{2} x\right)\) around \(x = 0.5\) is:

\[
y = \left(\frac{1}{2} \cdot \frac{\pi}{4} \cdot \frac{\pi}{4}\right) + \left(\frac{\pi}{2} \cdot \frac{\pi}{16} \cdot x\right) + \left(\frac{\pi}{8} \cdot \frac{\pi}{8} \cdot x\right) - \left(\frac{\pi}{12} \cdot \frac{\pi}{12} \cdot x\right)
\]

which is pretty close to: \(y = 3x^2 - 2x^3\).

Cubic vs. Quintic

Both go from 0.0 to 1.0.
Both have initial and final slopes of 0.
The quintic has initial and final curvatures of 0.