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Abstract. This paper presents an overview of our recent work on shape-based
object recognition in images. The overview focuses on the following related prob-
lems: i) discovery of all distinct 2D object categories frequently occurring in an
unlabeled set of images; ii) learning a model of the discovered categories; and
iii) recognition and localization of objects from the discovered categories in new
images. The paper argues that using image contours as basic features, and thus
directly grounding object discovery and recognition on shape, offers a number
of advantages in solving (i)-(iii) over more commonly used point features. Since
shape is directly encoded by layouts of image contours, similar contour layouts
across the images are expected to belong rather to object occurrences, than the
background. The contour layouts are captured by a graph overall pairs of match-
ing contours from different images. The graph’s maximum a posteriori multi-
coloring assignment is taken to represent the shapes of discovered objects. Our
empirical evaluation suggests that shape is more expressive and discriminative
than photometric features for object discovery.

1 Introduction

This paper presents an overview of the shape-based approachto object recognition and
related problems that we have developed over the last several years [1–3]. We briefly
describe the major components of our work, and explain its advantages over the more
common methods based on point features (e.g., [4–11]).

The role of shape in representing and recognizing objects inimages is a long-
standing question in computer vision. In psychophysics, itis widely recognized that
shape is one of the most categorical object properties [12].Yet, most recent work on ob-
ject recognition exclusively resorts to appearance features (e.g., color, textured patches),
arguing that they are more stable to variations in imaging conditions (e.g., illumination,
viewpoint). However, there are a number of unsatisfying aspects associated with point
features. They are usually defined only in terms of local discontinuities in brightness.
The inherent locality of points cannot represent the full spatial extent of objects in the
image. As a direct consequence, point-based object detection requires the use of scan-
ning windows of pre-specified size and shape, resulting in overlapping candidate detec-
tions that need to be resolved in a postprocessing step (e.g., non-maxima suppression).
This postprocessing is usually based on heuristic assumptions about the numbers, sizes,
and shapes of objects present. Since the final result of this is identification of the points
associated with detected objects, it leads to only approximate object localization.

A number of approaches, including our previous work, use image contours as fea-
tures [11, 13–25]. These methods argue that contours are in general richer descriptors,



more discriminative, and more noise-tolerant than interest points. Contours make vari-
ous constraints, frequently used in object recognition—such as those dealing with con-
tinuation, smoothness, containment, and adjacency—implicit and easier to incorporate
than points. Contours often coincide with the boundaries ofobjects and their subparts.
This allows simultaneous object detection and segmentation. Shape-based recognition
typically requires a manually specified shape template [21,22], or manually segmented
training images to learn the object shape [26]. Such a high level of supervision in train-
ing can be relaxed by combining shape with point features [27,28].

It is worth noting that the impact of any shortcomings of a contour detection algo-
rithm should not be confused with the weaknesses of shape-based representation. For
example, oversimplifying assumptions made by some edge detection algorithms about
shape, curvature, size, gray-level contrast, and topological context of objects to be ex-
pected in an image may lead to various errors [29–31]. From our experience, these
errors could be addressed by a higher-level recognition algorithms, as presented here.

In this paper, we study the role of object shape in the problemof discovering in-
stances of frequently occurring object categories (e.g, faces, bikes, giraffes, etc.) in an
unlabeled set of images. Object discovery is arguably a moredifficult problem than
learning visual properties of objects from labeled images,since the former additionally
requires identifying a meaningful image content in the background clutter, whereas the
latter exploits human annotation for directly accessing the image content of interest.
Object discovery brings together most recognition relatedproblems of interest here,
and serves well to highlight the strengths and shortcomingsof using shape as object
features for recognition. In particular, for object discovery, we deliberately disregard
appearance features, and use only the geometric propertiesof image contours. In this
way, we are in a position to empirically evaluate if shape is expressive and discrimi-
native enough to provide robust detection and segmentationof common objects in the
midst of background clutter. Also, we can empirically show advantages of using only
shape-based cues over photometric features for object discovery.

Most previous work on unsupervised object discovery exploits photometric prop-
erties of objects. For example, color of image regions is used in [32, 33], and texture
properties of image patches are used in [34, 35]. In our experiments, we outperform
these appearance-based approaches to object discovery in both object detection and
segmentation on benchmark datasets.

The remainder of this paper is organized as follows. Sec. 2 briefly reviews our ap-
proach to object discovery and points out our contributions. Sec. 3 specifies our shape
representation. Sec. 4 describes how to build a graph from all pairs of image contours
to capture shape properties of objects. Sec. 5 presents our graph multicoloring algo-
rithm for object discovery. Sec. 5 presents our experimental evaluation. Finally, Sec. 7
presents our concluding remarks.

2 A Brief Review of Our Approach

This section reviews our approach, originally presented in[2]. It consists of three steps,
illustrated in Fig. 1.Step 1: Given a set of unlabeled images, we extract their contours
by the minimum-cover algorithm of [36]. Each contour is characterized as a sequence



Fig. 1. Overview: Given a set of unlabeled images (left), we extracttheir contours (middle left),
and then build a graph of pairs of matching contours. Contourpairs are viewed as collaborat-
ing (straight graph edges), if they similarly deform from one image to another, or conflicting
(zigzag graph edges), otherwise. Such coupling of contour pairs facilitates their clustering with
the Coordinate Ascent Swendsen-Wang cut (CASW). The resulting clusters represent shapes of
discovered objects (right). (best viewed in color)

of beam-angle histograms, computed at points sampled alongthe contour. Similarity
between two contours is estimated by the dynamic time warping (DTW) of the cor-
responding sequences of beam-angle descriptors.Step 2 builds a weighted graph of
matching contours, aimed at facilitating a separation of the background from object
shapes in Step 3. We expect that there will be many similarly shaped curves, belong-
ing to the background. Since the backgrounds vary, by definition, similar background
curves will most likely have different spatial layouts across the image set. In contrast,
object contours (e.g., curves delineating a giraffe’s neck) are more likely to preserve
both shape and layout similarity in the set. Therefore, for object discovery, it is criti-
cal that we capture similar configurations of contours. We build a graph, where nodes
correspond to pairs of matching contours, and graph edges capture spatial layouts of
quadruples of contours.Step 3 conducts a probabilistic, iterative multicoloring of the
graph using the Coordinate-Ascent Swendsen-Wang (CASW) cut. In each iteration,
CASW cut probabilistically samples graph edges, and then assigns colors to the re-
sulting groups of connected nodes. The assignments are accepted by the Metropolis-
Hastings (MH) mechanism. After convergence, the resultingclusters represent shapes
of objects that are discovered in the image set.

3 Image Representation Using Shapes and Shape Description

This section presents Step 1 of our approach. In each image, we extract relatively long,
open contours using the minimum-cover algorithm of [36], referred to as gPb+ [36].
Similarity between two contours is estimated by aligning their sequences of points
by the Dynamic Time Warping (DTW). Each contour point is characterized by the
weighted Beam Angle Histogram (BAH), illustrated in Fig. 2.BAH is a weighted ver-
sion of the standard unweighted BAH, aimed at mitigating theuncertainty in contour
extraction. BAH down-weights the interaction of distant contour parts, as they are more
likely to belong to distinct objects in the scene, rather than to the same objects. BAH is
invariant to translation, in-plane rotation, and scale. Experimentally, we find that BAH



Fig. 2. BAH is a weighted
histogram of beam angles
θij at contour pointsPi,
i=1, 2, ...

Contour detectors BAH BAH-U [37] [38] [27]

Canny
0.23±0.01 0.21 0.18 0.15 0.21

0.59±0.02 0.57 0.48 0.48 0.52

[28]
0.32±0.03 0.30 0.25 0.18 0.29

0.78±0.03 0.75 0.62 0.61 0.72

gPb+ [36]
0.37±0.02 0.34 0.26 0.20 0.34

0.81±0.03 0.78 0.63 0.61 0.74

Table 1. Contour matching on the ETHZ image dataset [28]. Top
is Precision, bottom isRecall. The rightmost column shows
matching results of Oriented Chamfer Distance [27], and other
columns show DTW results. Descriptors (left to right): our BAH,
unweighted BAH, Shape Context [37], and SIFT [38].

with 12 bins gives optimal and stable results, and seems morerobust to errors in contour
extraction than some alternative shape descriptors, as reported in Table 1.

4 Constructing the Graph of Pairs of Image Contours

This section presents Step 2 that constructs a weighted graph, G = (V, E, ρ), from
contours extracted from all images in the set. Nodes ofG represent candidate matches
of contours,(u, u′)∈V , whereu andu′ belong to two different images. Similarity of two
contours is estimated by DTW. We keep only the best 5% of contour matches as nodes
of G. The graph is instrumental in capturing both intrinsic geometric properties of shape
parts, and relative layout relationships between shape parts. This facilitates generating
hypotheses of frequently occurring objects in the image setas similar contours repeating
in similar layouts in the images.

Edges ofG, e = ((u, u′), (v, v′)) ∈ E, capture spatial relations of corresponding
image contours. If contoursu andv in image 1, and their matchesu′ andv′ in image 2
have similar spatial layout, then they are less likely to belong to the background clut-
ter. All such contour pairs will have a high probability to become positively coupled
in G. Otherwise, matches(u, u′) and (v, v′) will have a high probability to become
negatively coupled inG, so that they could be placed in distinct clusters. This proba-
bilistic coupling of nodes inG is encoded by edge weights,ρe, defined as the likelihood
ρ+

e ∝ exp(−w+
δ δe), given the positive polarity ofe, andρ−e ∝ exp(−w−

δ (1−δe)), given
the negative polarity ofe. w+

δ andw−
δ are the parameters of the exponential distribu-

tion, andδe ∈ [0, 1] measures a difference in spatial layouts ofu andv in image 1, and
their matchesu′ andv′ in image 2.

We specifyδe so as to account for small object pose and camera viewpoint differ-
ences across the images. From our experiments, this is critical for enabling robustness
in the face of noise in contour extraction and representation. We make a distinction
between the following two cases.

Case 1: (u, u′) and(v, v′) come fromtwo images, whereu andv are in image 1,
andu′ andv′ are in image 2, as illustrated in Fig. 3. We estimateδe in terms of affine
homographies between the matching contours, denoted asHuu′ , andHvv′ , as follows.
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Fig. 3. Estimating layout differenceδ(u,u′,v,v′) when contoursu andv are in image 1, and their
matchesu′ and v′ are in image 2. We use the affine-homography projection ofu′ and v′ to
image 1,u′′ = Hvv′u′ andv′′ = Huu′v′, and computeδ as the average distance betweenu and
u′′, andv andv′′. The figure with projections shows that the contours(u, s′, v, v′) have different
layouts in image 1 and image 2, whereas the contours(u, u′, v, v′) have a similar layout.

From the DTW alignment of points alongu andu′, we estimate their affine homography
Huu′ . Similarly, for v andv′, we estimateHvv′ . Then, we projectu′ to image 1, as
u′′=Hvv′u′, and, similarly, projectv′ to image 1 asv′′=Huu′v′ (Fig. 3 right). Next,
in image 1, we measure distances between corresponding points of u andu′′, where
the point correspondence is obtained from DTW ofu andu′. Similarly, we measure
distances between corresponding points ofv andv′′. δe is defined as the average point
distance betweenu andu′′, andv andv′′.

homographic projection image 1 image 2 image 3
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′
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Fig. 4. Estimating layout differenceδ(u,u′,v,v′) when contoursu andv are in image 1, and their
matchesu′ andv′ are in image 2 and image 3, respectively. We use auxiliary contourss in the
neighborhood ofu to estimate multiple affine-homography projections ofu′ to image 1,u′′

s =
Hss′u

′, wheres′ is the best matching contour ofs in image 2. Also, we use auxiliary contours
t in the neighborhood ofv to estimate multiple projection ofv′ to image 1,v′′

t =
P

s
Htt′v

′,
wheret′ is the best matching contour oft in image 3. On the right, we show example projections
u′′

s = Hss′u
′ andv′′

t = Htt′v
′. Finally, we computeδ as the average distance betweenu and

{u′′

s }, andv and{v′′

t }.

Case 2: (u, u′) and(v, v′) come fromthree images, whereu andv belong to im-
age 1,u′ is in image 2, andv′ is in image 3, as illustrated in Fig. 4. In this case, we
can neither useHvv′ to projectu′ from image 2 to image 1, norHuu′ to projectv′ from
image 3 to image 1. Instead, we resort to context provided by auxiliary contourss′ in a
vicinity of u′, and auxiliary contourst′ in a vicinity of v′. For every neighbors′ of u′

in image 2, we find its best DTW matchs in image 1, and compute homographyHss′ .
Similarly, for every neighbort′ of v′ in image 3, we find its best DTW matcht in im-



age 1, and compute homographyHtt′ . Then, we use all these homographies to project
u′ to image 1, multiple times, asu′′

s=Hss′u′, for each neighboring contours. Similarly,
we projectv′′ to image 1, multiple times, asv′′t =Htt′v

′, for each neighboring contour
t. Next, as in Case 1, we measure distances between corresponding points of allu and
{u′′

s} pairs, and allv and{v′′t } pairs.δe is defined as the average point distance.

5 Coordinate-Ascent Swendsen-Wang Cut

This section presents Step 3. Our goal is to perform multicoloring of the graph of con-
tour matches,G = (V, E, ρ), specified in the previous section. The multicoloring parti-
tionsG into two subgraphs. One subgraph will represent a compositecluster of nodes,
consisting of a number of connected components (CCPs), receiving distinct colors. This
composite cluster contains contours of the discovered object categories. Nodes outside
of the composite cluster are interpreted as the background.An edge,e ∈ E, can be
negative or positive. A negative edge indicates that the nodes are conflicting, and thus
should not be assigned the same color. A positive edge indicates that the nodes are col-
laborative, and thus should be favored to get the same color.If nodes are connected by
positive edges, they form a CCP, and receive the same color. ACCP cannot contain a
negative edge. CCPs connected by negative edges form a composite cluster. The amount
of conflict and collaboration between two nodes is defined by the likelihoodρ, defined
in Sec. 4.

For multicoloring ofG, we use the Coordinate Ascent Swendsen-Wang cut (CASW)
that iterates the following three steps: (1) Sample a composite cluster fromG, by prob-
abilistically cutting and sampling positive and negative edges between nodes ofG. This
results in splitting and merging nodes into a new configuration of CCPs. (2) Assign
new colors to the resulting CCPs within the selected composite cluster, and use the
Metropolis-Hastings (MH) algorithm [39] to estimate whether to accept this new multi-
coloring assignment ofG, or to keep the previous state. (3) If the new state is accepted,
go to step (1); otherwise, if the algorithm converged, re-estimate parameters of the
pdf’s controlling the MH iterations, and go to step (1), until the pdf re-estimation does
not affect convergence. CASW is characterized by large MH moves, involving many
strongly-coupled graph nodes. This typically helps avoid local minima, and allows fast
convergence, unlike other related MCMC methods (e.g., [40]). In the following, we
present our Bayesian formulation of the CASW cut.

5.1 Bayesian Formulation

Multi-coloring ofG amounts to associating labelsli to nodes inV , i=1, . . . , |V |, where
li ∈ {0, 1, . . . , K}. K denotes the total number of target objects, which is a priori
unknown, and(K + 1)th label is the background. The multicoloring can be formalized
asM=(K, {li}i=1,...,|V |). To findM, we maximize the posteriorp(M|G), as

M∗ = arg max
M

p(M|G) = arg max
M

p(M)p(G|M). (1)

We define the prior asp(M) ∝ exp(−wKK) exp(−wNN), whereN is the number
of nodes that are labeled as background, andwK andwN are the parameters of the
exponential distribution.p(M) penalizes largeK andN .



We specify the likelihood,p(G|M), in terms of independent Bernoulli edges ofG.
We define binary functions1li 6=lj and1li=lj , which indicate whether node labelsli and
lj are different, or the same. Then, we have

p(G|M) ∝
∏

e∈E+ ρ+
e

∏

e∈E− ρ−e
∏

e∈E0(1 − ρ+
e )1li 6=lj · (1 − ρ−e )1li=lj , (2)

whereE
+ andE

− are the sets of positive and negative edges present in the composite
cluster, andE0 is the set of edges that are probabilistically cut.

5.2 Inference Using the CASW Cut

The CASW cut iterates the following two steps in inference. In step (1), edges ofG
are probabilistically sampled. If two nodes have the same label, their positive edge is
sampled, with likelihoodρ+

e . Otherwise, if the nodes have different labels, their negative
edge is sampled, with likelihoodρ−e . This re-connects all nodes into new connected
components (CCPs). The negative edges that are sampled willconnect CCPs into a
number of composite clusters, denoted byVcc. This configuration is referred to state
A. In step (2), we choose at random one composite cluster,Vcc, and probabilistically
reassign new colors to the CCPs withinVcc, resulting in a new stateB.

The CASW accepts the new stateB as follows. Letq(A → B) be the proposal
probability for moving from stateA to B, and letq(B → A) denote the reverse. The
acceptance rate,α(A→B), of the move fromA to B is defined as

α(A → B) = min

(

1,
q(B → A)p(M = B|G)

q(A → B)p(M = A|G)

)

. (3)

If α(A → B) is low, stateB cannot be accepted, and CASW remains in stateA.
q(A → B) is defined as a product of two probabilities: (i) the probability of gen-

eratingVcc in stateA, q(Vcc|A); and (ii) the probability of recoloring the CCPs within
Vcc in stateB, whereVcc is obtained in state A,q(B(Vcc)|Vcc, A). Thus, we have

q(B→A)

q(A→B)
=

q(Vcc|B)

q(Vcc|A)
=

∏

e∈Cut+
B
(1−ρ+

e )
∏

e∈Cut−
B
(1−ρ−e )

∏

e∈Cut+A
(1−ρ+

e )
∏

e∈Cut−A
(1−ρ−e )

. (4)

Note that complexity of each move is relatively low, since computingq(B→A)
q(A→B) involves

only those edges that are probabilistically cut aroundVcc in statesA andB — not all
edges. Also,p(M=B|G)

p(M=A|G) = p(M=B)p(G|M=B)
p(M=A)p(G|M=A) can be efficiently computed.p(M = B)

can be directly computed from the new coloring in stateB, and p(G|M=B)
p(G|M=A) depends

only on those edges that have changed their polarity.

6 Results

This section reviews the empirical validation of our approach, presented in [2]. The ex-
periments demonstrate advantages of using shape-based representations and modeling
of objects for recognition versus alternative approaches.



Caltech categoriesOur method [35] [34] [41]
A,C,F,M 98.62±0.51 98.03 98.55 88.82

A,C,F,M,W 97.57±0.46 96.92 97.30 N/A
A,C,F,M,W,K 97.13±0.42 96.15 95.42 N/A

ETHZ categories Our method [35]
A,B,G,M,S (bbox) 96.16±0.41 95.85

A,B,G,M,S (expanded) 87.35±0.37 76.47
A,B,G,M,S (entire image)85.49±0.33 N/A

Table 2. Mean purity of category discovery for Caltech-101 (A:Airplanes, C: Cars, F: Faces, M:
Motorbikes, W: Watches, K: Ketches), and ETHZ dataset (A:Applelogos, B: Bottles, G: Giraffes,
M: Mugs, S: Swans).

Given a set of images, we perform object discovery in two stages, as in [34, 35,
41]. We first coarsely cluster images based on their contoursusing CASW cut, and
then again use CASW to cluster contours from only those images that belong to the
same coarse cluster. The first stage serves to discover different object categories in the
image set. The second, fine-resolution stage serves to separate object contours from the
background, and identify characteristic parts of each discovered object category.

We use the following benchmark datasets: Caltech-101 [42],ETHZ [28], LabelMe
[43], and Weizmann Horses [44]. In the experiments on Caltech-101, we use all Cal-
tech images showing the same categories as those used in [34]. Evaluation on ETHZ
and Weizmann Horses uses the entire datasets. For LabelMe, we keep the 15 first im-
ages retrieved by keywordscar side, car rear, face, airplane andmotorbike. ETHZ and
LabelMe increase complexity over Caltech-101, since theirimages contain multiple ob-
ject instances, which may: (a) appear at different resolutions, (b) have low contrasts with
textured background, and (c) be partially occluded. The Weizmann Horses are suitable
to evaluate performance on articulated, non-rigid objects.

In the first stage of object discovery, CASW finds clusters of images. This is eval-
uated bypurity. Purity measures the extent to which a cluster contains images of a
single dominant object category. In the second stage, on each of these image clusters,
we useBounding Box Hit Rate (BBHR) to verify whether contours detected by CASW
fall within the true foreground regions. The ground truth isdefined as all pixels of the
extracted image contours that fall in the bounding boxes or segments of target objects.
A contour detected by CASW is counted as “hit” whenever the contour covers 50% or
more of the ground-truth pixels. Since we discard contours that are less than 50 pixels,
this means that at least 25 ground-truth pixels need to be detected within the bounding
box. Our accuracy in the second clustering stage depends on the initial set of pairs of
matching contours (i.e., nodes of graphG) input to CASW. This is evaluated by plotting
the ROC curve, parameterized by a threshold on the minimum DTW similarity between
pairs of matching contours which are included inG.

We evaluate the first and second stages of object discovery.First Stage: We build
a weighted graph whose nodes represent entire images. Edgesbetween images in the
graph are characterized by weights, defined as an average of DTW similarities of con-
tour matches from the corresponding pair of images. A similar characterization of graph
edges is used in [34,35]. For object discovery, we apply CASWto the graph, resulting in
image clusters. Each cluster is taken to consist of images showing a unique object cate-
gory. Unlike [34,35], we do not have to specify the number of categories present in the
image set, as an input parameter, since it is automatically inferred by CASW. Evaluation
is done on Caltech-101 and the ETHZ dataset. Table 2 shows that our mean purity is



FACES AIRPLANESALL CLASSES
CASW [34] [35]

A 0.11±0.01 0.21 0.17
F 0.12±0.01 0.30 0.15
K 0.06±0.003 0.19 0.08
M 0.04±0.002 0.11 0.07
W 0.02±0.003 0.08 0.03

GIRAFFES MUGSALL CLASSES
CASW [34] [35]

A 0.15±0.02 N/A 0.18
B 0.18±0.01 N/A 0.20
G 0.16±0.01 0.32 0.18
M 0.23±0.04 N/A 0.27
S 0.09±0.002 N/A 0.11

Fig. 5. Bounding Box Hit Rates (BBHR) vs False Positive Rates (FPR). Top is Caltech-101,
bottom is ETHZ. Left column is our CASW on all classes, and middle and right columns show
a comparison with [34, 35] on a specific class (lower curves are better). The tables show FPR
at BBHR=0.5. Caltech-101: A: Airplanes, F: Faces, K: Ketches, M: Motorbikes, W: Watches.
ETHZ: A: Applelogs, B: Bottles, G: Giraffes, M: Mugs, S: Swans. (best viewed in color)

superior to that of [34, 35, 41]. On Caltech-101, CASW successively findsK = 4, 5, 6
clusters of images, as we gradually increase the true numberof categories from 4 to
6. This demonstrates that we are able to automatically find the number of categories
present, with no supervision. On ETHZ, CASW again correctlyfinds K = 5 cate-
gories. As in [35], we evaluate purity when similarity between the images (i.e., weights
of edges in the graph) is estimated based on contours fallingwithin: (a) the bounding
boxes of target objects, (b) twice the size of the original bounding boxes (called ex-
panded in Table 2), and (c) the entire images. On ETHZ, CASW does not suffer a major
performance degradation when moving from the bounding boxes, to the challenging
case of using all contours from the entire images. Overall, our purity rates are high,
which enables accurate clustering of contours in the secondstage.Second Stage: We
use contours from all images grouped within one cluster, found in the first stage, to
build our graphG, and then conduct CASW. This is repeated for all image clusters. The
clustering of contours by CASW amounts to foreground detection, since the identified
contour clusters are taken to represent parts of the discovered object category. We eval-
uate BBHR and FPR on Caltech-101, ETHZ, LabelMe, and Weizmann Horses. Fig.5
shows that our BBHR and FPR values are higher than those of [34, 35] on the Caltech
and ETHZ. CASW findsK = 1 for Airplanes, Cars Rear, Faces, Ketches, Watches
in Caltech-101,Apples, Bottles, Mugs in ETHZ, andCar rear, Face, Airplane in La-
belMe. These objects do not have articulated parts that moveindependently, hence,
only one contour cluster is found. On the other hand, it findsK = 2 for Giraffes,
Swans in ETHZ, Cars side, Motorbikes in Caltech and LabelMe, andK = 3 for Weiz-
mann Horses. In Fig.6, we highlight contours from differentclusters with distinct col-
ors. Fig.6 demonstrates that CASW is capable not only to discover foreground objects,
but also to detect their characteristic parts, e.g., wheelsand roof forCars side, wheels
and seat forMotorbikes, head and legs forGiraffes, etc. The plot in Fig.6 evaluates



our object detection on LabelMe and Weizmann Horses. Detection accuracy is esti-
mated as the standard ratio of intersection over union of ground-truth and detection
bounding boxes,(BBgt ∩BBd)/(BBgt ∪BBd), whereBBd is the smallest bounding
box that encloses detected contours in the image. The average detection accuracy for
each category is: [Face(F): 0.52, Airplane(A): 0.45, Motorbike(M): 0.42, Car Rear(C):
0.34], whereas [35] achieves only [(F): 0.48, (A): 0.43, (M): 0.38, (C): 0.31]. For Weiz-
mann Horses, we obtainPrecision andRecall of 84.9%±0.68% and 82.4%±0.51%,
whereas [33] achieves only81.5% and78.6%.

The C-implementation of our CASW runs in less than 2 minutes on any dataset of
less than 100 images, on a 2.40GHz PC with 3.48GB RAM.

7 Conclusion

We have argued in this paper that using contours as basic image features: (a) Facilitates
capturing shape properties of objects; (b) Allows a unified computational framework
that can jointly address object discovery, recognition, and segmentation; and (c) En-
ables efficient and robust learning and inference. Our claims are supported by the state-
of-the-art performance of our shape-based approach to object discovery, recognition,
and segmentation, which we have reviewed in this paper. Our approach clusters image
contours based on their intrinsic geometric properties, and spatial layouts. The resulting
clusters are interpreted as shapes of parts of discovered objects.

We have derived two key insights. First, shape alone is sufficiently discriminative
and expressive to provide robust and efficient object discovery in unlabeled images,
which even outperforms related point-based methods. As image contours are dimen-
sionally matched with shape they are more suitable featuresfor object discovery than
point features. Second, due to background clutter, there could be many similar image
features — both contours and point features — coinciding with true object occurrences
and the background. To separate the background from foreground in object discov-
ery, one usually makes the assumption that the background clutter cannot generate oc-
currences of similar spatial configurations of features in distinct images with a high
probability. This probability is arguably lower for similar spatial configurations of con-
tours than that of points, since contours have a lager spatial extent than points. Thus,
identifying similar contour layouts in the images is expected to yield more accurate
foreground-background separation than finding similar layouts of points. In summary,
using contours facilitates discovering frequently occurring objects in images.
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Fig. 6. Unsupervised detection and segmentation of objects in example images from LabelMe
(top left), ETHZ (top right), and Weizmann Horses (bottom right). For LabelMe and ETHZ, each
row shows images that are grouped within a unique image cluster by CASW in the first stage.
Contours that are clustered by CASW in the second stage are highlighted with distinct colors
indicating cluster membership. CASW accurately discoversforeground objects, and delineates
their characteristic parts. E.g., for LabeMeCars sideview CASW discovers two contour clusters
(yellow and magenta), corresponding to the two car parts wheels and roof. (bottom left) ROC
curves for LabelMe and Weizmann Horses, obtained by varyingthe minimum allowed DTW
similarity between pairs of matching contours which are input to CASW. (best viewed in color)


