Math 314 - Calculus of Several Variables - Winter 2022

Class Information

Instructor: Tuan Pham
Class meetings:
  • Section 4: MWF 12:00 - 12:50 PM at TMCB 112.
  • Section 9: MWF 11:00 - 11:50 AM at TMCB 121.
    Class meeting may be livestreamed/recorded upon request: Zoom link, camera control (ask instructor for code).
    [Syllabus]   [Learning Suite]   [Class Schedule]   [Homework Schedule]   [WebAssign]
  • Office Hours

    M: 2:00 - 3:00, W, F: 1:00 - 2:00 at TMCB 316 (in person)
    Tu: 12:00 - 1:00, Th: 11:00 - 12:00 on Zoom: office hours Zoom link

    Assignments

  • Homework is to be submitted on Learning Suite. The schedule of homework assignments is in a link above.
  • Optional online assignments are given on WebAssign (link above).
  • Lecture notes

  • Review for Final exam (Apr 13)
  • Lecture 39 (Apr 11): Stokes theorem and Divergence theorem
  • Lecture 38 (Apr 8): surface integral of a vector field
  • Lecture 37 (Apr 6): surface integral of a scalar function
  • Lecture 36 (Apr 4): parametrization of surfaces
  • Lecture 35 (Apr 1): curl and divergence of a vector field
  • Lecture 34 (Mar 30): Green's theorem
  • Lecture 33 (Mar 28): fundamental theorem of Calculus (cont.)
  • Lecture 32 (Mar 25): line integral of vector fields; fundamental theorem of Calculus
  • Lecture 31 (Mar 23): more examples on line integral
  • Lecture 30 (Mar 21): line integral
  • Lecture 29 (Mar 16): more examples on spherical coordinates; vector fields
  • Lecture 28 (Mar 14): more examples on cylindrical coordinates
  • Lecture 27 (Mar 11): change of variables (cont.), cylindrical and spherical coordinates
  • Lecture 26 (Mar 9): change of variables
  • Review for Midterm II (Mar 7)
  • Lecture 25 (Mar 4): triple integral
  • Lecture 24 (Mar 2): double integral over a polar region
  • Lecture 23 (Feb 28): double integrals over a general region
  • Lecture 22 (Feb 25): double integrals
  • Lecture 21 (Feb 23): Lagrange multipliers
  • Lecture 20 (Feb 22): optimization problem
  • Lecture 19 (Feb 18): applications of directional derivatives
  • Lecture 18 (Feb 16): the chain rule, directional derivatives
  • Lecture 17 (Feb 14): differential, the chain rule
  • Lecture 16 (Feb 11): tangent plane and linear approximation
  • Lecture 15 (Feb 9): geometric meaning of partial derivatives, tangent plane
  • Lecture 14 (Feb 7): partial derivatives
  • Lecture 13 (Feb 4): more on limit and continuity
  • Lecture 12 (Feb 2): limit
  • Review for Midterm I (Jan 31)
  • Lecture 11 (Jan 28): domain, graph, level set
  • Lecture 10 (Jan 26): motion, velocity, acceleration
  • Lecture 9 (Jan 24): curvature, torsion
  • Lecture 8 (Jan 21): tangent line, integral, curve length
  • Lecture 7 (Jan 19): limit and derivative
  • Lecture 6 (Jan 14): surfaces and curves
  • Lecture 5 (Jan 12): equation of planes and lines
  • Lecture 4 (Jan 10): cross product
  • Lecture 3 (Jan 7): vectors, dot product, angle, projection
  • Lecture 2 (Jan 5): plane, sphere, cylinder
  • Lecture 1 (Jan 3): introduction
  • Supplement materials

  • Find line and surface integrals using Mathematica
  • Finding surface area
  • Find integrals using Mathematica
  • Hints for Problem 14 of 14.8
  • Optimization under constraints
  • Solution to Midterm I
  • Plot regions and level sets
  • Plot surfaces and curves on Mathematica
  • Access and first experiments on Mathematica
  • Links

    Mathematics Labroom (for help or tutoring service)
    Department of Mathematics

    This page was last modified on Wednesday, April 13, 2022