2023
Trimponias, G., Dietterich, T. G. (2023). Reinforcement learning with exogenous states and rewards. Arxiv preprint. Under review.
Wagstaff, K. L., Dietterich, T. G. (2023). Hidden heterogeneity: When to choose similarity-based calibration. Transactions on Machine Learning Research Open Review.
2022
Guyer, A., Dietterich, T. G. (2022). Will My Robot Achieve My Goals? Predicting the Probability that an MDP Policy Reaches a User-Specified Behavior Target. Arxiv preprint. Note: The original version contained an error. We have uploaded a corrected revision.
Wagstaff, K. L., Dietterich, T. G. (2022). Hidden heterogeneity: When to choose similarity-based calibration. Arxiv preprint.
Dietterich, T. G., Hostetler, J. (2022). Conformal prediction intervals for Markov Decision Process trajectories. Arxiv preprint. Under review.
Dietterich, T. G., Guyer, A. (2022). The familiarity hypothesis: Explaining the behavior of deep open set methods. Pattern Recognition, 132. p. 108931. Arxiv preprint.
Liu, S., Garrepallli, R., Hendrycks, D., Fern, A., Mondal, D., Dietterich, T. G. (2022). PAC Guarantees and Effective Algorithms for Detecting Novel Categories. Journal of Machine Learning Research, 23(44): 1-47. JMLR page
2021
Lukas Ruff, Jacob R. Kauffmann, Robert A. Vandermeulen, Gregoire Montavon, Wojciech Samek, Marius Kloft, Thomas G. Dietterich, Klaus-Robert Mueller (2021). A Unifying Review of Deep and Shallow Anomaly Detection. Proc. IEEE, 109 (5): 756-795. arXiv version
Jonathan Ferrer-Mestres, Thomas G. Dietterich, Olivier Buffet, Iadine Chades (2021). K-N-MOMDPs: Towards Interpretable Solutions for Adaptive Management. AAAI 2021, 14775-14784. PDF.
Yunye Gong, Xiao Lin, Yi Yao, Thomas G. Dietterich, Ajay Divakaran, Melinda T. Gervasio. (2021). Confidence Calibration for Domain Generalization under Covariate Shift. ICCV 2021: 8938-8947. IEEE Explore.
Shiv Shankar, Daniel Sheldon, Tao Sun, John Pickering, Thomas G. Dietterich. (2021). Three-quarter Sibling Regression for Denoising Observational Data. Arxiv preprint.
Erich Merrill, Stefan Lee, Fuxin Li, Thomas G. Dietterich, Alan Fern (2021). Deep Convolution for Irregularly Sampled Temporal Point Clouds. Arxiv preprint.
2020
Alspector, J., Dietterich, T. G. (2020). DARPA's role in machine learning. AI Magazine, 41 (2): 36-48. Online version.
Das, S., Wong, W-K., Dietterich, T. G., Fern, A., Emmott, A. (2020). Discovering Anomalies by Incorporating Feedback from an Expert. ACM Trans. Knowl. Discov. Data, 14(4): 49:1-49:32.
Ferrer-Mestres, J., Dietterich, T. G., Buffet, O., Chades, I. (2020). Solving K-MDPs. ICAPS 2020. 110-118.
Zemicheal, T., Dietterich, T. G. (2020). Conditional Mixture Models for Precipitation Data Quality Control. Proceedings of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies (COMPASS-2020). PDF.
Lauer, C. J., Montgomery, C. A., Dietterich, T. G. (2020). Evaluating wildland fire liability standards---does regulation incentivise good management? International Journal of Wildland Fire. DOI.
2019
Carla P. Gomes, Thomas G. Dietterich, Christopher Barrett, Jon Conrad, Bistra Dilkina, Stefano Ermon, Fei Fang, Andrew Farnsworth, Alan Fern, Xiaoli Z. Fern, Daniel Fink, Douglas H. Fisher, Alexander Flecker, Daniel Freund, Angela Fuller, John M. Gregoire, John E. Hopcroft, Steve Kelling, J. Zico Kolter, Warren B. Powell, Nicole D. Sintov, John S. Selker, Bart Selman, Daniel Sheldon, David B. Shmoys, Milind Tambe, Weng-Keen Wong, Christopher Wood, Xiaojian Wu, Yexiang Xue, Amulya Yadav, Abdul-Aziz Yakubu, Mary Lou Zeeman. (2019). Computational sustainability: computing for a better world and a sustainable future. Communications of the ACM, 62 (9): 56-65. CACM Open Access Version.
Zemicheal, T., Dietterich, T. G. (2019) Anomaly Detection in the Presence of Missing Values for Weather Data Quality Control. Proceedings of the 2nd ACM SIGCAS Conference on Computing and Sustainable Societies (COMPASS-2019). 65-73. Accra, Ghana. PDF Preprint.
Siddiqui, M. A., Fern, A., Dietterich, T. G., Wong, W-K. (2019). Sequential Feature Explanations for Anomaly Detection. ACM Transactions on Knowledge Discovery from Data, 13(1): Article No. 1. HTML Version at ACM. PDF preprint.
Shankar, S., Sheldon, D., Sun, T., Pickering, J., Dietterich, T. G. (2019). Three-quarter Sibling Regression for Denoising Observational Data. Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, pp. 5960-5966. Published version. PDF Preprint.
Lauer, C. J., Montgomery, C. A., Dietterich, T. G. (2019). Managing Fragmented Fire-Threatened Landscapes With Spatial Externalities. Forest Science. Publisher's version.
Hendrycks, D., Dietterich, T. G. (2019). Benchmarking Neural Network Robustness to Common Corruptions and Perturbations.. International Conference on Learning Representations (ICLR 2019) PDF at OpenReview arXiv PDF
Hendrycks, D., Mazeika, M., Dietterich, T. G. (2019) Deep Anomaly Detection with Outlier Exposure. International Conference on Learning Representations (ICLR 2019) PDF at Open Review arXiv PDF
Dietterich, T. G. (2019). Robust Artificial Intelligence and Robust Human Organizations. Frontiers of Computer Science, 13(1): 1-3. SharedIt Link to Publisher's Page DOI 10.1007/s11704-018-8900-4.
Albers, H. J., Dietterich, T. G., Hall, K. M., Lee, K. D., Taleghan, M. A. (2019). Simulator-Defined Markov Decision Processes: A Case Study in Managing Bio-invasions. In Fei Fang, Milind Tambe, Andrew Plumptre, Bistra Dilkina (Eds.) Artificial Intelligence and Conservation. Cambridge University Press. DOI
McGregor, S., Houtman, R., Metoyer, R., Dietterich, T. G. (2019). Connecting Conservation Research and Implementation: Building a Wildfire Assistant. In Fei Fang, Milind Tambe, Andrew Plumptre, Bistra Dilkina (Eds.) Artificial Intelligence and Conservation. Cambridge University Press. DOI.
2018
Hendrycks, D., Dietterich, T. G. (2018). Benchmarking neural network robustness to common corruptions and surface variations. arXiv 1807.01697
Siddiqui, M. A., Fern, A., Dietterich, T., Wright, R., Theriault, A., Archer, D. W. (2018). Feedback-Guided Tree-Based Anomaly Detection via Online Optimization. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. PDF Preprint
Dietterich, T. G., Zemicheal, T. (2018). Anomaly Detection in the Presence of Missing Values. KDD ODD Workshop 2018. arXiv 1809.01605.
Albers, Heidi J., Hall, Kim Meyer, Lee, Katherine D.Lee, Alkaee Taleghan, M. Dietterich, Thomas G. (2018). The Role of Restoration and Key Ecological Invasion Mechanisms in Optimal Spatial-Dynamic Management of Invasive Species. Ecological Economics, 151 44--54. DOI 10.1016/j.ecolecon.2018.03.031
Hall, Kim Meyer, Albers, Heidi J., Alkaee Taleghan, Majid, Dietterich, Thomas G. (2018). Optimal Spatial-Dynamic Management of Stochastic Species Invasions. Environmental and Resource Economics, 70(2): 403-427. Published version.
Dietterich, T. G., Trimponias, G., Chen, Z. (2018). Discovering and Removing Exogenous State Variables and Rewards for Reinforcement Learning. Proceedings of the 35th International Conference on Machine Learning (ICML 2018), Proceedings of Machine Learning Research, 80, 1261-1269
Liu, S., Garrepalli, R., Dietterich, T. G., Fern, A., Hendrycks, D. (2018). Open Category Detection with PAC Guarantees. Proceedings of the 35th International Conference on Machine Learning (ICML 2018). Proceedings of Machine Learning Research, 80, 3175-3184.
Alkaee-Taleghan, M., Dietterich, T. G. (2018). Efficient Exploration for Constrained MDPs. AAAI 2018 Spring Symposium. Published version
2017
Hostetler, J., Fern, A., Dietterich, T. G. (2017). Sample-based tree search with fixed and adaptive state abstractions. Journal of Artificial Intelligence Research, 60, 717-777. Published Version
McGregor, S., Houtman, R., Montgomery, C., Metoyer, R., Dietterich, T. G.. (2017) Factoring Exogenous State for Model-Free Monte Carlo. arXiv preprint 1703.09390
McGregor, S., Houtman, R., Montgomery, C., Metoyer, R., Dietterich, T. G. (2017). Fast Optimization of Wildfire Suppression Policies with SMAC. arXiv preprint arXiv:1703.09391
Dietterich, T. (2017). Steps Toward Robust Artificial Intelligence. AI Magazine, 38(3): 3-24. Read at AI Magazine. Video
Lauer, C. J., Montgomery, C. A., Dietterich, T. G. (2017). Spatial interactions and optimal forest management on a fire-threatened landscape. Forest Policy and Economics, 83: 107-120. Read at ScienceDirect. DOI.
O'Leary, M. A., Alphonse, K., Arce, M., Cavaliere, D., Cirranello, A., Dietterich, T., Julius, M., Kaufman, S., Law, E., Passarotti, M., Reft, A., Robalino, J., Simmons, N. B., Smith, S., Stevenson, D., Theriot, E., Velazco, P. M., Walls, R., Yu, Mengjie, Daly, Marymegan. (2017). Crowds Replicate Performance of Scientific Experts Scoring Phylogenetic Matrices of Phenotypes. Systematic Biology, 67(1), 49-60. https://doi.org/10.1093/sysbio/syx052
McGregor, S., Buckingham, H., Dietterich, T. G., Houtman, R., Montgomery, C., Metoyer, R. (2017). Interactive Visualization for Testing Markov Decision Processes. Journal of Visual Languages and Computing, 39. 93-106. PDF Preprint.
Hall, K. M., Albers, H. J., Taleghan, M. A., Dietterich, T. G. (2017). Optimal Spatial-Dynamic Management of Stochastic Species Invasions, Environmental and Resource Economics, 1-25. DOI. Read online at SharedIt.
McGregor, S., Buckingham, H., Dietterich, T. G., Houtman, R., Montgomery, C., Metoyer, R. (2017). Facilitating Testing and Debugging of Markov Decision Processes with Interactive Visualization: MDPvis. Journal of Visual Languages and Computing. PDF Preprint. DOI
Dujardin, Yann, Dietterich, Thomas G., Chades, Iadine (2017). Three new algorithms to solve N-POMDPs. AAAI Conference on Artificial Intelligence, AAAI-2017. PDF.
2016
Shubhomoy Das, Weng-Keen Wong, Thomas Dietterich, Alan Fern, Andrew Emmott (2016). Incorporating Expert Feedback into Active Anomaly Discovery. IEEE International Conference on Data Mining (ICDM-2016), Barcelona, Spain. PDF
Liping Liu, Thomas G. Dietterich, Nan Li, Zhi-Hua Zhou (2016). Transductive Optimization of Top k Precision. International Joint Conference on Artificial Intelligence (IJCAI-2016). pp. 1781-1787. New York, NY. PDF.
Md. Amran Siddiqui, Alan Fern, Thomas G. Dietterich, Shubhomoy Das (2016). Finite Sample Complexity of Rare Pattern Anomaly Detection. Uncertainty in Artificial Intelligence (UAI-2016). New York, NY. PDF.
Alkaee-Taleghan, M., Hall, K., Crowley, M., Albers, H. J., Dietterich, T. G. (2015). PAC Optimal MDP Planning for Ecosystem Management. Journal of Machine Learning Research, 16, 3877-3903. PDF version.
Md Amran Siddiqui, Alan Fern, Thomas Dietterich, Weng-Keen Wong. (2015). Sequential Feature Explanations for Anomaly Detection. SIGKDD Workshop on Outlier Detection and Description.. PDF Preprint.
Mohammed Shahed Sorower, Michael Slater, Thomas Dietterich (2015). Improving Automated Email Tagging with Implicit Feedback. UIST '15 Proceedings of the 28th Annual ACM Symposium on User Interface Software and Technology. 201-211 DOI 10.1145/2807442.2807501. PDF Preprint. Presentation.
Sean McGregor, Hailey Buckingham, Thomas G. Dietterich, Rachel Houtman, Claire Montgomery, and Ronald Metoyer (2015). Facilitating Testing and Debugging of Markov Decision Processes with Interactive Visualization. Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing (VL-HCC 2015). PDF Preprint.
Thomas Dietterich, Eric Horvitz (2015). Viewpoint: Rise of Concerns about AI: Reflections and Directions. Communications of the ACM, 58(10) 38-40. PDF version. Video.
Yann Dujardin, Thomas Dietterich, Iadine Chades (2015). alpha-min: A Compact Approximate Solver for Finite-Horizon POMDPs. International Joint Conference on Artificial Intelligence, IJCAI-2015. PDF.
Jesse Hostetler, Alan Fern, Thomas Dietterich (2015). Progressive Abstraction Refinement for Sparse Sampling. Uncertainty in Artificial Intelligence, UAI-2015. Amsterdam. PDF.
Michael Lam, Janardhan Rao Doppa, Sinisa Todorovic, Thomas Dietterich (2015). HC-Search for Structured Prediction in Computer Vision. IEEE Computer Vision and Pattern Recognition (CVPR-2015). PDF preprint.
Hutchinson, R. A., Valente, J. J., Emerson, S. C., Betts, M. G., Dietterich, T. G. (2015). Penalized likelihood methods improve parameter estimates in occupancy models. Methods in Ecology and Environment. Open Access Version.
Jun Xie, Chao Ma, Janardhan Rao Doppa, Prashanth Mannem, Xiaoli Fern, Thomas Dietterich, Prasad Tadepalli (2015). Learning Greedy Policies for the Easy-First Framework. AAAI Conference on Artificial Intelligence (AAAI-2015). PDF Preprint.
Judah, K., Fern, A., Dietterich, T., Tadepalli, P. (2014). Active Imitation Learning: Formal and Practical Reductions to I.I.D. Learning. Journal of Machine Learning Research, 15, 4105-4143. Published version.
Chao Ma, Janardhan Rao Doppa, Walker Orr, Prashanth Mannem, Xiaoli Fern, Tom Dietterich, Prasad Tadepalli (2014). Prune-and-Score: Learning for Greedy Coreference Resolution. Proceedings of International Conference on Empirical Methods in Natural Language Processing (EMNLP). October. PDF Preprint.
Farnsworth, A., Sheldon, D., Geevarghese, J., Irvine, J., Van Doren, B., Webb, K., Dietterich, T. G., Kelling, S. (2014). Reconstructing Velocities of Migrating Birds from Weather Radar--A Case Study in Computational Sustainability. AI Magazine, Summer, 31-48. DOI 10.1609/aimag.v35i2.2527.
Orr, J. W., Chambers, N., Doppa, J. R., Tadepalli, P., Fern, X., Dietterich, T. G. (2014). Learning Scripts as Hidden Markov Models. In Proceedings of the AAAI Conference on Artificial Intelligence. AAAI Press. PDF preprint
Hostetler, J., Fern, A., Dietterich, T. G. (2014). State Aggregation in Monte Carlo Tree Search. In Proceedings of the AAAI Conference on Artificial Intelligence. AAAI Press. PDF Preprint.
Liu, L-P., Sheldon, D., Dietterich, T. G. (2014). Gaussian Approximation of Collective Graphical Models. In Proceedings of the 2014 International Conference on Machine Learning (ICML 2014). Journal of Machine Learning Research Workshop and Conference Proceedings, 32 (1):1602-1610. PDF Preprint.
Liu, L-P., Dietterich, T. G. (2014). Learnability of the Superset Label Learning Problem. In Proceedings of the 2014 International Conference on Machine Learning (ICML 2014). Journal of Machine Learning Research Workshop and Conference Proceedings, 32 (1): 16290-1637. PDF Preprint.
Sullivan, B. L., Aycrigg, J. L., Barry, J. H., Bonney, R. E., Bruns, N., Cooper, C. B., Damoulas, T., Dhondt, A. A., Dietterich, T. G., Farnsworth, A., Fink, D., Fitzpatrick, J. W., Fredericks, T., Gerbracht, J., Gomes, C., Hochachka, W. M., Iliff, M. J., Lagoze, C., La Sorte, F. A., Merrifield, M., Morris, W., Hochachka, W. M., Iliff, M., Lagoze, C., La Sorte, F. A., Merrifield, M., Morris, W., Phillips, T. B., Reynolds, M., Rodewald, A. D., Rosenberg, K. V., Trautmann, N. M., Wiggins, A., Winkler, D. W., Wong, W.-K., Wood, C. L., Yu, J., Kelling, S. (2014). The eBird enterprise: An integrated approach to development and application of citizen science. Biological Conservation, 169, 31-40. doi:10.1016/j.biocon.2013.11.003 Open Access Download.
Senator, T. E., Goldberg, H. G., Memory, A., Young, W. T., Rees, B., Pierce, R., Huang, D., Reardon, M., Bader, D. A., Chow, E. Essa, I., Jones, J., Bettadapura, V., Chau, D., Green, O., Kaya, O., Zakrzewska, A., Briscoe, E., Mappus IV, R. L., McColl, R., Weiss, L., Dietterich, T. G., Fern, A., Wong, W-K., Das, S., Emmott, A., Irvine, J., Corkill, D., Friedland, L., Gentzel, A., Jensen, D., Lee, J-Y, Koutra, D., Faloutsos, C. (2013). Detecting Insider Threats in a Real Corporate Database of Computer Usage Activity. In 19th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD-2013) (pp. 1393-1401). PDF Preprint.
Emmott, A. F., Das, S., Dietterich, T. G., Fern, A., Wong, W.-K. (2013). Systematic construction of anomaly detection benchmarks from real data. ODD '13 Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description. (pp. 16-21). DOI PDF Preprint.
Wagstaff, K. L., Lanza, N. L., Thompson, D. R., Dietterich, T. G., Gilmore, M. S. (2013). Guiding scientific discovery with explanations using DEMUD. Proceedings of the Twenty-Seventh Conference on Artificial Intelligence, 2013.. PDF Preprint.
Rachel M. Houtman, Claire A. Montgomery, Aaron R. Gagnon, David E. Calkin, Thomas G. Dietterich, Sean McGregor, Mark Crowley (2013). Allowing a Wildfire to Burn: Estimating the Effect on Future Fire Suppression Costs. International Journal of Wildland Fire 22, 871--882. PDF Preprint. Published Version
Burleigh, G., Alphonse, K., Alverson, A. J., Bik, H. M., Blank, C., Cirranello, A. L., Cui, H., Daly, M., Dietterich, T. G., Gasparich, G., Irvine, J., Julius, M., Kaufman, S., Law, E., Liu, J., Moore, L., O'Leary, M. A., Passarotti, M., Ranade, S., Simmons, N. B., Stevenson, D. W., Thacker, R. W., Theriot, E. C., Todorovic, S., Velazco, P. M., Walls, R. L., Wolfe, J. M., Yu, M. (2013). Next-generation phenomics for the Tree of Life. PLOS Currents Tree of Life. DOI 10.1371/currents.tol.085c713acafc8711b2ff7010a4b03733. PDF Preprint
Dietterich, T., Taleghan, M., Crowley, M. (2013). PAC Optimal Planning for Invasive Species Management: Improved Exploration for Reinforcement Learning from Simulator-Defined MDPs. In Proceedings of the AAAI Conference on Artificial Intelligence, AAAI-2013. AAAI Press. PDF corrected after publication (corrected again on 16 April 2014).
Sheldon, D., Farnsworth, A., Irvine, J., Van Doren, B., Webb, K., Dietterich, T. G., Kelling, S. (2013). Approximate Bayesian Inference for Reconstructing Velocities of Migrating Birds from Weather Radar. In Proceedings of the AAAI Conference on Artificial Intelligence, AAAI-2013. AAAI Press. PDF Preprint.
Sheldon, D., Sun, T., Kumar, A., Dietterich, T. G. (2013). Approximate Inference in Collective Graphical Models. In Proceedings of the International Conference on Machine Learning, ICML-2013. PDF Preprint.
Yao, Q., Liu, Q., Dietterich, T. G., Todorovic, S., Lin, J., Diao, G., Yang, B., Tang, J. (2013). Segmentation of touching insects based on optical flow and NCuts. Biosystems Engineering, 114, 67-77. PDF Preprint.
Liu, L., Dietterich, T. G. (2012). A Conditional Multinomial Mixture Model for Superset Label Learning. Advances in Neural Information Processing Systems (NIPS-2012). NIPS Foundation. PDF.
Judah, K., Fern, A., Dietterich, T. (2012). Active Imitation Learning via Reduction to I.I.D. Active Learning. Uncertainty in Artificial Intelligence: Proceedings of the Twenty-Eighth Conference (2012). 428-437. AUAI Press, Corvallis, OR. PDF.
Hostetler, J., Dereszynski, E., Dietterich, T., Fern, A. (2012). Inferring strategies from limited reconnaissance in real-time strategy games. Uncertainty in Artificial Intelligence: Proceedings of the Twenty-Eighth Conference (2012). 367--76. AUAI Press, Corvallis, OR. PDF Preprint.
Zhang, X. S., Shrestha, B., Yoon, S., Kambhampati, S., DiBona, P., Guo, J. K., McFarlane, D., Hofmann, M. O., Whitebread, K., Appling, D. S., Whitaker, E. T., Trewhitt, E. B., Ding, L., Michaelis, J. R., McGuinness, D. L., Hendler, J. A., Doppa, J. R., Parker, C. Dietterich, T. G., Tadepalli, P., Wong, W-K., Green, D., Rebguns, A., Spears, D., Kuter, U., Levine, G., DeJong, G., MacTavish, R. L., Ontanon, S., Radhakrishnan, J., Ram, A., Mostafa, H., Zafar, H., Zhang, C., Corkill, D., Lesser, V., Song, Z. (2012) An Ensemble Architecture for Learning Complex Problem-Solving Techniques From Demonstration. ACM Transactions on Intelligent Systems and Technology, 3(4), 38 pp. PDF Preprint.
Dietterich, T. G., Dereszynski, E., Hutchinson, R. A., Sheldon, D. (2012). Machine Learning for Computational Sustainability. International Conference on Green Computing (IGCC-2012). Full open access version without IEEE copyright.
Sheldon, D., Dietterich, T. G. (2011). Collective Graphical Models. 2011 Conference on Neural Information Processing Systems (NIPS-2011). PDF Preprint.
Sorower, M. S., Dietterich, T. G., Doppa, J. R., Orr, W., Tadepalli, P., Fern, X. (2011). Inverting Grice's Maxims to Learn Rules from Natural Language Extractions. 2011 Conference on Neural Information Processing Systems (NIPS-2011). PDF Preprint.
Doppa, J. R., Sorower, M. S., Nasresfahani, M., Irvine, J., Orr, W., Dietterich, T. G., Fern, X., Tadepalli, P. (2011). Learning Rules from Incomplete Examples via Implicit Mention Models. 2011 Asian Conference on Machine Learning (ACML 2011). PDF Preprint.
Dereszynski, E., Hostetler, J., Fern, A., Dietterich, T., Hoang, T-T., Udarbe, M. (2011). Learning Probabilistic Behavior Models in Real-time Strategy Games. In Artificial Intelligence in Digital Entertainment (AIIDE-2011). PDF Preprint.
Dereszynski, E., Dietterich, T. G. (2011). Spatiotemporal Models for Anomaly Detection in Dynamic Environmental Monitoring Campaigns. ACM Transactions on Sensor Networks. 8(1): 3:1-3:26. PDF Preprint
Hutchinson, R., Liu, L-P., Dietterich, T. (2011). Incorporating Boosted Regression Trees into Ecological Latent Variable Models. In Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence (AAAI 2011). 1343-1348 PDF. This version corrects a typo in the published version.
Sorower, M. S., Dietterich, T. G., Doppa, J. R., Tadepalli, P., Fern, X. (2011). Learning Rules from Incomplete Examples via a Probabilistic Mention Model. IJCAI 2011 Workshop on Learning by Reading and its Applications in Intelligent Question-Answering. PDF Preprint.
Doppa, J. R., NasrEsfahani, M., Sorower, M. S., Irvine, J. Dietterich, T. G., Fern, X., Tadepalli, P. (2011). Learning Rules from Incomplete Examples via Observation Models. IJCAI 2011 Workshop on Learning by Reading and its Applications in Intelligent Question-Answering. PDF Preprint.
Lin, J., Larios, N., Lytle, D., Moldenke, A., Paasch, R., Shapiro, L., Todorovic, S., Dietterich, T. (2011). Fine-Grained Recognition for Arthropod Field Surveys: Three Image Collections. First Workshop on Fine-Grained Visual Categorization (CVPR-2011). PDF Preprint.
Larios, N., Lin, J., Zhang, M., Lytle, D., Moldenke, A., Shapiro, L. G., and Dietterich, T. G. (2011). Stacked Spatial-Pyramid Kernel: An Object-Class Recognition Method to Combine Scores from Random Trees, IEEE Workshop on Applications of Computer Vision. 329-335. PDF Preprint.
Bao, X., Dietterich, T. G. (2011). FolderPredictor: Reducing the Cost of Reaching the Right Folder. ACM Transactions on Intelligent Systems and Technology. 2(1), 8:1-8:23. DOI PDF Preprint.
Lytle, D. A., Martínez-Muñoz, G., Zhang, W., Larios, N., Shapiro, L., Paasch, R., Moldenke, A., Mortensen, E. A., Todorovic, S., Dietterich, T. G. (2010). Automated processing and identification of benthic invertebrate samples. Journal of the North American Benthological Society, 29(3), 867-874. PDF preprint.
Larios, N., Soran, B., Shapiro, L., Martínez-Muños, G., Lin, J., Dietterich, T. G. (2010). Haar Random Forest Features and SVM Spatial Matching Kernel for Stonefly Species Identification. IEEE International Conference on Pattern Recognition (ICPR-2010). In press. PDF Preprint.
Judah, K., Fern, A., Roy, S., Dietterich, T. (2010). Reinforcement Learning via Practice and Critique Advice. AAAI Conference on Artificial Intelligence (AAAI-10). 481-486. AAAI Press. PDF
Jensen, C., Lonsdale, H., Wynn, E., Cao, J., Slater, M., Dietterich, T. G. (2010). The life and times of files and information: a study of desktop provenance. pp. 767-776. In E. D. Mynatt, D. Schoner, G. Fitzpatrick, S. E. Hudson, K. Edwards, T. Rodden (Eds.) Proceedings of the 28th International Conference on Human Factors in Computing Systems, CHI 2010. PDF Preprint.
Barford, P., Dacier, M., Dietterich, T. G., Fredrikson, M., Giffin, J., Jajodia, S., Jha, S., Li, J., Liu, P., Ning, P., Ou, X., Song, D., Strater, L., Swarup, V., Tadda, G., Wang, C., Yen., J. (2010). Cyber SA: Situational Awareness for Cyber Defense. pp. 3-13. in Jajodia, S., Liu, P., Swarup, V., Wang, C. (Eds.) Cyber Situational Awareness, Springer. PDF Preprint.
Dietterich, T. G., Bao, X., Keiser, V., Shen, J. (2010). Machine Learning Methods for High Level Cyber Situation Awareness. pp. 227-247 in Jajodia, S., Liu, P., Swarup, V., Wang, C. (Eds.) Cyber Situational Awareness, Springer. PDF Preprint.
Shen, J., Dietterich, T. (2009). A Family of Large Margin
Linear Classifiers and Its Application in Dynamic Environments.
Statistical Analysis and Data Mining. 2(5-6): 328-345.
PDF Preprint.
Keiser, V., Dietterich, T. G. (2009). Evaluating online text
classification algorithms for email prediction in TaskTracer.
Conference on Email and Anti-Spam. July 16-17, Mountain View, CA.
PDF Preprint.
Zhang, X., Yoon, S., DiBona, P., Appling, D. S., Ding, L., Doppa,
J. R., Green, D., Guo, J. K., Kuter, U. Levine, G., MacTavish, R. L.,
McFarlane, D., Michaelis, J. R., Mostafa, H., Ontanon, S., Parker, C.,
Radhakrishnan, J., Rebguns, A., Shrestha, B., Song, Z., Trewhitt,
E. B., Zafar, H., Zhang, C., Corkill, D., DeJong, G., Dietterich,
T. G., Kambhampati, S., Lesser, V., McGuinness, D. L., Ram, A.,
Spears, D., Tadepalli, P. Whitaker, E. T., Wong, W-K., Hendler, J. A.,
Hofmann, M. O., Whitebread, K. (2009). An Ensemble Learning and
Problem Solving Architecture for Airspace
Management. Proceedings of the 2009 Conference on Innovative
Applications of Artificial Intelligence (IAAI-2009). PDF Preprint.
Dietterich, T. G. (2009). Machine Learning in Ecosystem
Informatics and Sustainability. Abstract of Invited Talk.
Proceedings of the 2009 International Joint Conference on
Artificial Intelligence (IJCAI-2009). Pasadena, CA. PDF Preprint.
Judah, K., Dietterich, T., Fern, A., Irvine, J., Slater, M.,
Tadepalli, P., Gervasio, M., Ellwood, C., Jarrold, B., Brdiczka, O.,
Blythe, J. (2009). User Initiated Learning for Adaptive
Interfaces. In IJCAI2009 Workshop on Intelligence and
Interaction. PDF Preprint.
Martínez-Muñoz, G., Zhang, W., Payet, N., Todorovic, S., Larios, N.,
Yamamuro, A., Lytle, D., Moldenke, A., Mortensen, E., Paasch, R.,
Shapiro, L., Dietterich, T. (2009). Dictionary-Free Categorization
of Very Similar Objects via Stacked Evidence Trees.. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR-2009),
Miami Beach, FL. PDF Preprint.
Zhang, W., Surve, A., Fern, X., Dietterich, T. (2009). Learning
Non-Redundant Codebooks for Classifying Complex Objects. In
International Conference on Machine Learning (ICML-2009).
Montreal, Canada. 1241-1248. PDF
Preprint.
Stumpf, S., Rajaram, V., Li, L., Wong, W-K., Burnett, M.,
Dietterich, T., Sullivan, E., Herlocker, J. (2009). Interacting
Meaningfully with Machine Learning Systems: Three Experiments.
International Journal on Human-Computer
Studies. DOI 10.1016/j.ijhcs.2009.03.004
PDF Preprint.
Shen, J., Dietterich, T. (2009). A Family of Large Margin Linear
Classifiers and Its Applications in Dynamic Environments.
Proceedings of the SIAM International Conference on Data Mining
2009 (SDM-09), pages 164-172. PDF Preprint.
Shen, J., Irvine, J., Bao, X., Goodman, M., Kolibab, S., Tran, A.,
Carl, F., Kirschner, B., Stumpf, S., Dietterich, T. (2009).
Detecting and Correcting User Activity Switches: Algorithms and
Interfaces. In Proceedings of the International Conference on
Intelligent User Interfaces (IUI-2009). PDF Preprint.
Shen, J., Fitzhenry, E., Dietterich, T. (2009). Discovering Frequent
Work Procedures From Resource Connections. In Proceedings of the
International Conference on Intelligent User Interfaces (IUI-2009).
PDF Preprint.
Natarajan, S., Tadepalli, P., Dietterich, T. and Fern, A. (2008).
Learning First-Order Probabilistic Models with Combining Rules,
Annals of Mathematics and Artificial Intelligence, Special
issue on Probabilistic Relational Learning, 54 (1-3): 223-256. PDF Preprint.
Sarpola, M.J., Paasch, R.K., Dietterich, T.G., Lytle, D.A.,
Mortensen, E. N., Moldenke, A.R., and Shapiro, L. (2008). An aquatic
insect imaging device to automate insect classification,
Transactions of the American Society of Agricultural and Biological
Engineers, 51 (6): 2217-2225. PDF Preprint.
Zhang, W., Dietterich, T. G. (2008).
Learning Visual Dictionaries and Decision Lists for Object Recognition.
19th International Conference on Pattern Recognition
(ICPR-08). 1-4. DOI 10.1109/ICPR.2008.4761769. PDF Preprint.
Dietterich, T. G., Hao, G., Ashenfelter, A. (2008). Gradient Tree
Boosting for Training Conditional Random Fields. Journal of
Machine Learning Research. 9, 2113-2139.
PDF Preprint.
Dietterich, T. G., Domingos, P., Getoor, L., Muggleton, S. Tadepalli,
P. (2008). Structured machine learning: the next ten years. Machine
Learning. 73(1) 3-23. DOI: 10.1007/s10994-008-5079-1
PDF Preprint.
Wynkoop, M., Dietterich, T. (2008). Learning MDP Action Models Via
Discrete Mixture Trees. In Machine Learning and Knowledge
Discovery in Databases. Lecture Notes in Computer Science Volume
5212/2008, 597-612. Berlin: Springer. PDF Preprint.
Mehta, N., Ray, S., Tadepalli, P., Dietterich, T. (2008). Automatic
Discovery and Transfer of MAXQ Hierarchies. International
Conference on Machine Learning (ICML-2008) PDF Preprint.
Dietterich, T. G., Bao, X. (2008). Integrating Multiple Learning
Components Through Markov Logic. Twenty-Third Conference on
Artificial Intelligence (AAAI-2008). 622-627. PDF Preprint.
Larios, N., Deng, H., Zhang, W., Sarpola, M., Yuen, J., Paasch, R.,
Moldenke, A., Lytle, D., Ruiz Correa, S., Mortensen, E., Shapiro, L.,
Dietterich, T. (2008). Automated Insect Identication through
Concatenated Histograms of Local Appearance Features. Machine
Vision and Applications, 19 (2):105-123. PDF Preprint.
Stumpf, S., Fitzhenry, E., Dietterich, T. (2007). The Use of
Provenance in Information Retrieval.. Workshop on Principles of
Provenance (PROPR), Edinburgh, Scotland, 19-20 November, 2007.
PDF Preprint.
Dietterich, T. G. (2007). Machine Learning in Ecosystem
Informatics. Proceedings of the Tenth International Conference
on Discovery Science. Lecture Notes in Artificial Intelligence
Volume 4755, Springer, Berlin. PDF Preprint.
Peterson, C., Paasch, R. K., Ge, P., Dietterich, T. G. (2007).
Product innovation for interdisciplinary design under changing
requirements. International Conference on Engineering Design
(ICED2007), Paris, France. PDF preprint.
Dereszynski, E., Dietterich, T. (2007). Probabilistic
Models for Anomaly Detection in Remote Sensor Data Streams.
Proceedings of the 23rd
Conference on Uncertainty in Artificial Intelligence
(UAI-2007). 75-82. PDF preprint.
E. N. Mortensen, E. L. Delgado, H. Deng, D. Lytle, A. Moldenke,
R. Paasch, L. Shapiro, P. Wu, W. Zhang, T. G. Dietterich (2007).
Pattern Recognition for Ecological Science and Environmental
Monitoring: An Initial Report. In N. MacLeod and M. O'Neill
(Eds.) Automated Taxon Identification in
Systematics. 189-206. CRC Press, Boca Raton. PDF preprint.
Deng, H., Zhang, W., Mortensen, E., Dietterich,
T. (2007). Principal Curvature-based Region Detector for Object
Recognition. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR-2007). Minneapolis, MN. 1-4. DOI
10.1109/CVPR.2007.382972. PDF Preprint.
Larios, N., Deng, H., Zhang, W., Sarpola, M., Yuen, J., Paasch,
R., Moldenke, A., Lytle, D., Ruiz Correa, S., Mortensen, E.,
Shapiro, L. G., Dietterich T. G. (2007). Automated Insect
Identification through Concatenated Histograms of Local Appearance
Features. IEEE Workshop on Applications of
Computer Vision (WACV-2007), 26-32. Austin, TX.
PDF Preprint.
Stumpf, S., Rajaram, V., Li, L., Burnett, M., Dietterich, T.,
Sullivan, E., Drummond, R., Herlocker, J. (2007). Toward Harnessing
User Feedback for Machine Learning. In International
Conference on Intelligent User Interfaces (IUI-2007), Honolulu,
HI. pp. 82-91. ACM Press.
PDF Preprint.
Shen, J., Dietterich, T. (2007). Active EM to Reduce Noise in
Activity Recognition. In International Conference on
Intelligent User Interfaces (IUI-2007), Honolulu,
HI. pp. 132-140. ACM Press.
PDF Preprint.
Shen, J., Li, L., Dietterich, T. G. (2007). Real-Time Detection of
Task Switches of Desktop Users. In Proceedings of the
International Joint Conference on Artificial Intelligence
(IJCAI-07). Hyderabad, India. pp. 2868-2873. PDF preprint.
Deng, H., Mortensen, E. N., Shapiro, L., Dietterich,
T. G. (2006). Reinforcement Matching Using Region Context. In
S. Lucey and T. Chen (Eds.) Beyond Patches. Workshop at
IEEE Conference on Computer Vision and Pattern Recognition.
IEEE. New York. PDF preprint.
Zhang, W., Deng, H., Dietterich, T. G., Mortensen, E. N. (2006). A
Hierarchical Object Recognition System Based on Multi-scale Principal
Curvature Regions. Proceedings of the International
Conference on Pattern Recognition, Vol. I. 778-782. PDF Preprint.
Langford, W. T., Gergel, S. E., Dietterich, T. G., Cohen,
W. (2006). Map misclassification can cause large errors in
landscape pattern indices: Examples from habitat fragmentation.
Ecosystems, 9 (3), 474-488.
PDF Preprint.
Bao, X., Herlocker, J., Dietterich, T. (2006). Fewer
clicks and less frustration: Reducing the cost of reaching the right
folder. In 2006 International Conference on Intelligent
User Interfaces. 178-185. Sydney, Australia.
PDF preprint.
Shen, J., Li, L., Dietterich, T., Herlocker, J. (2006). A
Hybrid Learning System for Recognizing User Tasks from Desktop
Activities and Email Messages. In 2006 International
Conference on Intelligent User Interfaces. 86-92. Sydney, Australia.
PDF postprint. (Corrected
bibliography after publication.)
Marx, Z., Rosenstein, M. T., Kaelbling, L. P., Dietterich,
T. G. (2005). Transfer learning with an ensemble of background
tasks. NIPS 2005 Workshop on Transfer Learning, Whistler,
BC. PDF preprint.
Rosenstein, M. T., Marx, Z., Kaelbling, L. P., Dietterich,
T. G. (2005). To transfer or not to transfer.
NIPS 2005 Workshop on Transfer Learning, Whistler,
BC. PDF preprint.
Altendorf, E., Restificar, E., Dietterich, T. G. (2005).
Learning from sparse data by exploiting monotonicity constraints.
Proceedings of the 21st Conference on Uncertainty in
Artificial Intelligence, Edinburgh, Scotland.
PDF preprint.
Natarajan, S., Tadepalli, P., Altendorf, E., Dietterich, T. G.,
Fern, A., Restificar, A. (2005). Learning first-order
probabilistic models with combining rules.
Proceedings of the 22nd International Conference on Machine Learning,
Bonn, Germany.
PDF preprint.
Bayer-Zubek, V., Dietterich, T. G. (2005). Integrating
Learning from Examples into the Search for Diagnostic Policies.
Journal of Artificial Intelligence Research, 24, 263-303.
JAIR web page.
Stumpf, S., Bao, X., Dragunov, A., Dietterich, T., Herlocker, J.,
Johnsrude, K., Li, L., Shen, J. (2005). Predicting User Tasks: I
Know What You're Doing!. In Workshop on Human Comprehensible
Machine Learning. Twentieth National Conference on Artificial
Intelligence (AAAI-05). Pittsburgh, PA, July 9-13, 2005. PDF preprint.
Dragunov, A. N., Dietterich, T. G., Johnsrude, K.,
McLaughlin, M., Li, L., Herlocker, J. L. (2005). TaskTracer: A
Desktop Environment to Support Multi-tasking Knowledge Workers.
International Conference on Intelligent User Interfaces
(IUI-2005), (pp. 75-82). ACM Press.
PDF preprint.
Dietterich, T. G. Learning and Reasoning. Technical
report, School of Electrical Engineering and Computer Science, Oregon
State University. PDF
version gzipped
postscript version.
Barto, A., Dietterich, T. G. (2004). Reinforcement learning and
its relationship to supervised learning. In J. Si, A. G. Barto,
W. B. Powell, D. Wunsch II (Eds.) Handbook of Learning and
Approximate Dynamic Programming. pp. 47-64. Wiley
Interscience/IEEE Press, Piscataway, NJ. PDF preprint.
Dietterich, T. G., Ashenfelter, A., Bulatov,
Y. (2004). Training Conditional Random Fields via Gradient Tree
Boosting. International Conference on Machine Learning, 217-224,
Banff, Canada PDF preprint.
Wu, P., Dietterich, T. G. (2004). Improving SVM Accuracy by
Training on Auxiliary Data Sources.
International Conference on Machine Learning, 871-878, Banff, Canada
PDF preprint.
Valentini, G., Dietterich, T. G. (2004). Bias-variance analysis
of Support Vector Machines for the development of SVM-based ensemble
methods. Journal of Machine Learning
Research, 5, 725-775. PDF preprint.
gzipped postscript preprint.
Valentini, G. and Dietterich, T. G. (2003). Low Bias
Bagged Support Vector Machines.
International Conference on Machine Learning, ICML-2003, Washington,
DC, 752-759.
PDF
preprint. gzipped postscript.
Wang, X. and Dietterich, T. G. (2003). Model-based Policy
Gradient Reinforcement Learning. International Conference on
Machine Learning, ICML-2003, Washington, DC, 776-783. Postscript
preprint.
Dietterich, T. G. (2003). Machine Learning. In
Nature Encyclopedia of Cognitive Science, London: Macmillan,
2003. Postscript
Preprint
PDF Version
Dietterich, T. G. and Wang, X. (2002). Batch value function
approximation via support vectors. In Dietterich, T. G., Becker,
S., Ghahramani, Z. (Eds.) Advances in Neural Information
Processing Systems 14. (pp. 1491-1498). Cambridge, MA: MIT Press.
Postscript
preprint.
Wang, X. and Dietterich, T. G. (2002). Stabilizing value
function approximation with the BFBP algorithm. In T. G., Becker, S., Ghahramani, Z. (Eds.)
Advances in Neural Information Processing Systems 14. (pp. 1587-1594).
Cambridge, MA: MIT Press. Postscript
preprint.
Margineantu, D. D. and Dietterich, T. G. (2002) Improved class
probability estimates from decision tree models. in D. D. Denison,
M. H. Hansen, C. C. Holmes, B. Mallick, and B. Yu (Eds.) Nonlinear
Estimation and Classification; Lecture Notes in Statistics, 171,
pp. 169-184. New York: Springer-Verlag. Postscript
preprint. PDF
preprint. © Springer-Verlag.
Dietterich, T. G. (2002). Machine Learning for Sequential Data:
A Review. In T. Caelli (Ed.) Structural, Syntactic, and
Statistical Pattern Recognition; Lecture Notes in Computer Science,
Vol. 2396. (pp. 15-30). Springer-Verlag. Postscript
preprint. PDF
preprint. © Springer-Verlag.
Fountain, T., Dietterich, T., and Sudyka, B. (2002). Data mining
for manufacturing control: An application in optimizing IC test.
Chapter 13 of B. Nebel and G. Lakemeyer (Eds.) Exploring Artificial
Intelligence in the New Millenium. Morgan-Kaufmann. Postscript
preprint.
Busquets, D., Lopez de Mantaras, R., Sierra, C., and
Dietterich, T. G. (2002). Reinforcement learning for landmark-based
robot navigation. Proceedings of Autonomous Agents and
Multi-Agent Systems. (pp. 841-842). ACM Press. Postscript
(Longer version is available as a technical report; see below)
Dietterich, T. G., Becker, S., and Ghahramani, Z. (eds.)
(2002). Advances in Neural Information Processing Systems 14.
MIT Press, Cambridge, MA. Online Proceedings.
Dietterich, T. G., Busquets, D., Lopez de Mantaras, R., Sierra,
C. (2002). Action Refinement in Reinforcement Learning by
Probability Smoothing. In Proceedings of the International
Conference on Machine Learning. (pages 107-114) Postscript
Preprint. PDF
Preprint.
Zubek, V. B., Dietterich, T. G. (2002). Pruning Improves
Heuristic Search for Cost-Sensitive Learning. In Proceedings of
the International Conference on Machine Learning. (pages 27-34) Postscript
Preprint. PDF
Preprint.
Dietterich, T. G. (2002). Ensemble Learning. In
The Handbook of Brain Theory and Neural Networks, Second edition,
(M.A. Arbib, Ed.), Cambridge, MA: The MIT Press, 2002. 405-408. Postscript Preprint.
Valentini, G., Dietterich, T. G. (2002). Bias-Variance
Analysis and Ensembles of SVM. In J. Kittler and F. Roli (Ed.)
Third International Workshop on Multiple Classifier Systems,
Lecture Notes in Computer Science, 2364. (pp. 222-231) New York: Springer Verlag. Postscript
preprint © Springer-Verlag.
Busquets, D., Lopez de Mantaras, R., Sierra, C., and Dietterich,
T. G. (2001). Reinforcement learning for landmark-based robot
navigation. Technical Report, Department of Computer Science,
Oregon State University.
Postscript
Bakiri, G., Dietterich, T. G. (2001). Achieving
high-accuracy text-to-speech with machine learning. In
B. Damper (Ed.) Data mining in speech synthesis. Kluwer
Academic Publishers, Boston, MA. Postscript
preprint.
Zubek, V. B., Dietterich, T. G. (2001). Two Heuristics for
Solving POMDPs Having a Delayed Need to Observe. To appear in
Proceedings of the IJCAI Workshop on Planning under Uncertainty and
Incomplete Information. August 6, 2001. Seattle, WA.
Postscript preprint.
Margineantu, D. and Dietterich, T. G. (2001). Lazy Class
Probability Estimators. In 33rd Symposium on the Interface of
Computing Science and Statistics, Costa Mesa, California.
Leen, T. K., Dietterich, T. G., and Tresp, V. (2001) Advances in
Neural Information Processing Systems, 13, Cambridge, MA: MIT Press.
Dietterich, T. G. (2000). The Divide-and-Conquer Manifesto In
Algorithmic Learning Theory 11th International Conference (ALT 2000) (pp. 13-26). New
York: Springer-Verlag. Postscript
Preprint. © Springer-Verlag.
Dietterich, T. G. (2000). Hierarchical reinforcement
learning with the MAXQ value function decomposition.
Journal of Artificial Intelligence Research, 13, 227-303.
Compressed postscript.
Also available from my HTTP directory as
Gzipped postscript
Wang, X., Dietterich, T. G. (2000). Efficient value function
approximation using regression trees. Pages 51-54 of collective
article: J. Boyan, W. Buntine, and A. Jagota (Eds.), Statistical
Machine Learning for Large Scale Optimization. Neural Computing
Surveys, 3, 1-58. Gzipped postscript.
Dietterich, T. G. (2000). Machine Learning. In David
Hemmendinger, Anthony Ralston and Edwin Reilly (Eds.), The
Encyclopedia of Computer Science, Fourth Edition, Thomson Computer
Press. 1056-1059.
Zubek, V. B. and Dietterich, T. G. (2000) A POMDP Approximation
Algorithm that Anticipates the Need to Observe. In Proceedings
of the Pacific Rim Conference on Artificial Intelligence
(PRICAI-2000); Lecture Notes in Computer Science (pp. 521-532).
New York: Springer-Verlag. Postscript
Preprint. © Springer-Verlag.
Fountain, T., Dietterich, T. G., Sudyka, B. (2000).
Mining IC Test Data to Optimize VLSI Testing. In
Proceedings of the Sixth ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. (pp. 18-25). ACM Press. PDF preprint.
Winner of Award for Best Application Paper (Research Track).
Dietterich, T. G. (2000). An Overview of MAXQ Hierarchical
Reinforcement Learning. In B. Y. Choueiry and T. Walsh
(Eds.) Proceedings of the Symposium on Abstraction, Reformulation
and Approximation SARA 2000, Lecture Notes in Artificial
Intelligence (pp. 26-44), New York: Springer Verlag. Postscript
preprint © Springer-Verlag.
Chown, E., Dietterich, T. G. (2000). A Divide-and-Conquer
Approach to Learning From Prior Knowledge. In International
Conference on Machine Learning, ICML-2000 (pp. 143-150). Postscript
preprint.
Margineantu, D. D., Dietterich, T. G. (2000). Bootstrap Methods
for the Cost-Sensitive Evaluation of Classifiers . In
International Conference on Machine Learning, ICML-2000
(pp. 582-590).
Postscript preprint
Dietterich, T. G. (2000). Ensemble Methods in Machine
Learning. In J. Kittler and F. Roli (Ed.) First International
Workshop on Multiple Classifier Systems, Lecture Notes in Computer
Science (pp. 1-15). New York: Springer Verlag. Postscript
preprint. PDF preprint. © Springer-Verlag.
Dietterich, T. G., (2000). An experimental comparison of
three methods for constructing ensembles of decision trees: Bagging,
boosting, and randomization. Machine Learning, 40 (2) 139-158. Postscript
preprint PDF preprint.
Dietterich, T. G. (2000). State abstraction in MAXQ
hierarchical reinforcement learning. In Advances in Neural
Information Processing Systems, 12. S. A. Solla, T. K. Leen, and
K.-R. Muller (eds.), 994-1000, MIT Press.
Postscript
Preprint.
Dietterich, T. G. (1999). Machine Learning. In Rob
Wilson and Frank Keil (Eds.) The MIT Encyclopedia of the
Cognitive Sciences, MIT Press. 497-498.
Margineantu, D., Dietterich, T. G. (1999). Learning Decision
Trees for Loss Minimization in Multi-Class Problems. Technical
report 99-30-03. Department of Computer Science, Oregon State
University Postscript
file.
Wang, X., Dietterich, T. G. (1999). Efficient Value Function
Approximation
Using Regression Trees. In Proceedings of the
IJCAI Workshop on Statistical Machine Learning for Large-Scale
Optimization, Stockholm, Sweden. Postscript
file.
Dietterich, T. G. (1998). The MAXQ method for hierarchical
reinforcement learning. 1998 International Conference on Machine
Learning. (118-126). Morgan Kaufmann, San Francisco.
Postscript preprint.
Note: This version has some errors corrected compared to the version
that appears in the proceedings. In particular, Figure 1 is fixed.
Dietterich, T. G., (1998). Approximate Statistical Tests
for Comparing Supervised Classification Learning Algorithms. Neural
Computation, 10 (7) 1895-1924. Postscript
preprint. (Revised December 30, 1997).
Chown, E., Dietterich, T. G. (1997). A comparison of
neural network and process-based models for vegetation distribution
under global climate change. Technical Report. Postscript preprint.
Zhang, W., Dietterich, T. G. (1997). Solving
Combinatorial Optimization Tasks by Reinforcement Learning: A General
Methodology Applied to Resource-Constrained Scheduling. Technical
Report. Department of Computer Science, Oregon State University. Postscript
preprint.
Dietterich, T. G., (1997). Machine Learning Research: Four
Current Directions AI Magazine. 18 (4), 97-136.
Postscript preprint.
PDF preprint.
Dietterich, T. G. (1997). Hierarchical Reinforcement Learning with the
MAXQ Value Function Decomposition. Technical report. Gzipped
postscript file.
Dietterich, T. G. (1997). Fundamental Experimental Research in
Machine Learning. A section of the document
Basic Topics in Experimental Computer Science edited by John
McCarthy.
HTML version or
gzipped postscript version.
Kong, E. G., and Dietterich, T. G. (1997).
Probability estimation using error-correcting output coding.
IASTED International Conference: Artificial Intelligence and Soft
Computing, Banff, Canada.
Postscript preprint.
Margineantu, D., Dietterich, T. G. (1997). Pruning Adaptive
Boosting. Fourteenth International Conference on Machine Learning.
Morgan Kaufmann, San Francisco. 211-218.
Postscript preprint PDF preprint.
Tadepalli, P., Dietterich, T. G. (1997). Hierarchical
Explanation-Based Reinforcement Learning. Fourteenth
International Conference on Machine Learning. Morgan Kaufmann, San
Francisco. 358-366.
Postscript preprint.
Dietterich, T. G., Flann, N. S. (1997). Explanation-based
Learning and Reinforcement Learning: A Unified View.
Machine Learning, 28, 169-210.
Postscript preprint. . PDF preprint.
See below for
short version that appeared in the 1995 Machine Learning Conference.
Dietterich, T. G., Lathrop, R. H., Lozano-Perez, T. (1997)
Solving the multiple-instance problem with axis-parallel
rectangles. Artificial Intelligence, 89(1-2), 31-71.
PDF file (The last 3 figures are not available online;
Note: this version contains a corrected Table 4, in which the confidence
interval for C4 is fixed.)
Dietterich, T. G., (1996). Editorial Machine
Learning 24 (2), 1-3.
Postscript preprint.
Dietterich, T. G., Kearns, M., Mansour, Y., (1996).
Applying the weak learning framework to understand and improve
C4.5. Proceedings of the Thirteenth International Conference on
Machine Learning, 96-104.
PDF preprint.
Zhang, W., Dietterich, T. G., (1996). High-Performance
Job-Shop Scheduling With A Time-Delay TD(lambda) Network.
D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo (Eds.) Advances in
Neural Information Processing Systems, 8, 1024-1030.
Postscript
preprint.
Almuallim, H., Dietterich, T. G. (1995). A study of
maximal-coverage learning algorithms. In D. Wolpert (Ed.) The
Mathematics of Generalization: Proceedings of the SFI/CNLS Workshop on
Formal Approaches to Supervised Learning . Reading, MA:
Addison-Wesley. 279-314.
Institute.
Postscript preprint.
Dietterich, T. G. (1995) Overfitting and under-computing in
machine learning. Computing Surveys, 27(3), 326-327. Postscript
preprint
Wettschereck, D., Dietterich, T. G. (1995) An experimental
comparison of the nearest-neighbor and nearest-hyperrectangle
algorithms. Machine Learning, 19(1), 5-28. Postscript
preprint.
Dietterich, T. G., Hild, H., and Bakiri, G., (1995) A
comparison of ID3 and backpropagation for English text-to-speech
mapping. Machine Learning, 18(1), 51-80.
Postscript preprint.
Dietterich, T. G., Bakiri, G. (1995) Solving Multiclass
Learning Problems via Error-Correcting Output Codes. Journal
of Artificial Intelligence Research 2: 263-286.
Postscript file.
Zhang, W., Dietterich, T. G., (1995). A Reinforcement Learning
Approach to Job-shop Scheduling. Proceedings of the Fourteenth
International Joint Conference on Artificial
Intelligence. (1114-1120). San Francisco, CA: Morgan-Kaufmann.
Postscript preprint.
Dietterich, T. G., Flann, N. S., (1995). Explanation-based
Learning and Reinforcement Learning: A Unified View. In
Proceedings of the 12th International Conference on Machine Learning
(pp. 176-184). Tahoe City, CA. San Francisco: Morgan Kaufmann.
Poscript preprint. See above for journal version.
Kong, E. B., Dietterich, T. G., (1995). Error-Correcting
Output Coding Corrects Bias and Variance. In
Proceedings of the 12th International Conference on Machine Learning
(pp. 313-321). Tahoe City, CA. San Francisco: Morgan Kaufmann.
Poscript preprint.
Zhang, W., Dietterich, T. G., (1995). Value Function
Approximations and Job-Shop Scheduling. In J. A. Boyan, A. W. Moore,
and R. S. Sutton (Eds.) Proceedings of the Workshop on Value
Function Approximation. Carnegie-Mellon University, School of
Computer Science, Report Number CMU-CS-95-206.
Postscript file.
Dietterich, T. G., Kong, E. B., (1995). Machine Learning
Bias, Statistical Bias, and Statistical Variance of Decision Tree
Algorithms. Technical Report. Department of Computer Science,
Oregon State University.
Poscript file.
Jain, A. N., Dietterich, T. G., Lathrop, R. H., Chapman, D.,
Critchlow, R. E., Bauer, B. E., Webster, T. A., Lozano-Perez,
T. (1994). Compass: A shape-based machine learning tool for drug
design. Computer-Aided Molecular Design, 8 (6) 635-652.
Almuallim, H., Dietterich, T. G. (1994) Learning boolean
concepts in the presence of many irrelevant features.
Artificial Intelligence, 69(1-2): 279-306.
Postscript preprint.
Dietterich, T. G., Jain, A., Lathrop, R., Lozano-Perez, T.
(1994). A comparison of dynamic reposing and tangent distance for drug
activity prediction. Advances
in Neural Information Processing Systems, 6. San Mateo, CA: Morgan
Kaufmann. 216-223.
Postscript preprint.
Wettschereck, D., Dietterich, T. G. (1994). Locally adaptive
nearest neighbor algorithms. Advances in Neural Information
Processing Systems, 6. San Mateo, CA: Morgan Kaufmann. 184-191.
Postscript preprint.
Kong, E. B., Dietterich, T. G. (1994). Why error-correcting
output coding works. Also cited as "Why error-correcting
output coding works with decision trees." Unpublished
manuscript. PDF. In
retrospect, I would reinterpret Figure 10 as showing that the
advantage of ECOC over standard methods disappears as the learning
algorithm becomes more local and increases as the learning
algorithm becomes more global. So I view this as showing that
the decision-boundary alignment hypothesis is likely to be
at least partially correct.
Bakiri, G., Dietterich, T. G. (1993). Performance comparison
between human engineered and machine learned letter-to-sound rules for
English: A machine learning success story. 18th International
Conference on the Applications of Computers and Statistics to Science
and Society. Cairo, Egypt.
Postscript preprint.
Almuallim, H., Dietterich, T. G. (1992). Efficient algorithms
for identifying relevant features. Proceedings of the Ninth
Canadian Conference on Artificial Intelligence (pp. 38-45).
Vancouver, BC: Morgan Kaufmann. May 11-15.
Postscript preprint.
Almuallim, H., Dietterich, T. G. (1992). On learning more
concepts. In Proceedings of the Ninth International Conference
on Machine Learning, (pp. 11-19), Aberdeen, Scotland:
Morgan-Kaufmann.
Postscript preprint.
Wettschereck, D., Dietterich, T. G. (1992) Improving the
performance of radial basis function networks by learning center
locations. In Moody, J. E., Hanson, S. J., and Lippmann,
R. P. (Eds.) Advances in Neural Information Processing Systems,
4. (pp. 1133-1140) San Mateo, CA: Morgan Kaufmann.
Postscript preprint.
Dietterich, T. G. (1991) Knowledge compilation: Bridging the
gap between specification and implementation. IEEE Expert,
6 (2) 80-82. Postscript
preprint.
Dietterich, T. G., Bakiri, G. (1991) Error-correcting output
codes: A general method for improving multiclass inductive learning
programs. Proceedings of the Ninth National Conference on
Artificial Intelligence (AAAI-91) (pp. 572-577). Anaheim, CA:
AAAI Press.
Postscript preprint.
Almuallim, H., Dietterich, T. G. (1991) Learning with many
irrelevant features. Proceedings of the Ninth National
Conference on Artificial Intelligence (AAAI-91) (pp. 547-552).
Anaheim, CA: AAAI Press.
Postscript preprint.
Dietterich, T. G. (1991). Do Hidden Units Implement
Error-Correcting Codes? Technical Report.
Postscript file
Cerbone, G., Dietterich, T. G. (1991). Symbolic Methods in
Numerical Optimization. Technical Report 91-30-7, Department of
Computer Science, Oregon State University, Corvallis, OR.
PDF Scan.
Shavlik, J. and Dietterich, T. G. (1990). Readings in Machine
Learning. Morgan Kaufmann Publishers, San
Francisco, CA. Introductory
Article and Contents.
Order from Amazon.
Dietterich, T. G. (1990). Machine Learning. Annual
Review of Computer Science, 4: 255-306. Postscript
preprint with no figures.
Dietterich, T. G., (1990). Editorial: Exploratory Research in
Machine Learning. Machine Learning 5 (1), 5-10.
Postscript preprint.
Dietterich, T. G., Hild, H., Bakiri, G. (1990) A comparative
study of ID3 and backpropagation for English text-to-speech
mapping. Proceedings of the 1990 Machine Learning
Conference, Austin, TX. 24-31.
Postscript preprint.
Cerbone, G., Dietterich, T. G., (1990) Inductive and numerical
methods in knowledge compilation. Proceedings of CRIB-90.
Menlo Park, CA: Price Waterhouse.
Flann, N. S., and Dietterich, T. G., (1989)
A study of explanation-based methods for inductive learning.
Machine Learning, 4 (2), 187-226.
Dietterich, T. G., (1989)
Limitations of Inductive Learning.
Proceedings of the Sixth International Workshop on Machine
Learning, Ithaca, NY. San Mateo, CA: Morgan Kaufmann. 124-128.
Postscript preprint.
Koff, Caroline N. (1988). A specialized ATMS for Equivalence
Relations. M.S. Thesis. Technical report 88-80-7. Department
of Computer Science, Oregon State
University. PDF Scan.
Ullman, D. G., Dietterich, T. G., and Stauffer, L. A. (1988). A
model of the mechanical design process based on empirical data.
Artificial Intelligence in Engineering, Design, and Manufacturing, 2
(1), 33-52.
Dietterich, T. G., and Flann, N. S., (1988). An
inductive approach to solving the imperfect theory problem.
Proceedings of the AAAI Spring Symposium Series: Explanation-based
Learning, 42-46.
Flann, N. S., Dietterich, T. G., (1988). Induction over
Explanations: A method that exploits domain knowledge to learn
from examples. Technical Report 88-30-3. Department of
Computer Science, Oregon State
University. PDF Scan.
Koff, C. N., Flann, N. S., and Dietterich, T. G., (1988). A
specialized ATMS for equivalence relations. Proceedings of the
National Conference on Artificial Intelligence (AAAI-88), St. Paul,
MN. Los Altos, CA: Morgan-Kaufmann. 182-187.
Koff, C. N., Flann, N. S., and Dietterich, T G., (1988). An
efficient ATMS for equivalence relations.. Technical Report
88-30-1. Department of Computer Science, Oregon State
University. PDF Scan.
Dietterich, T. G., Bennett, J. S. (1988). Varieties of
Operationality. Technical Report 88-30-6, Department of Computer
Science, Oregon State University. PDF Tech
Report.
Ullman, D. G., and Dietterich, T. G. (1987). Toward Expert CAD,
ASME, Computers in Mechanical Engineering, 6(3), 56-70.
Ullman, D. G., and Dietterich, T. G. (1987). Mechanical design
methodology: Implications on future developments of computer-aided
design and knowledge-based systems. Engineering With Computers,
(2), 21-29.
Flann, N. S., Dietterich, T. G., and Corpron, D. R., (1987). Forward
chaining logic programming with the ATMS. In Proceedings of the
National Conference on Artificial Intelligence (AAAI-87), Seattle, WA.
Los Altos, CA: Morgan-Kaufmann, 24-29. Also Technical Report 87-30-2,
Department of Computer Science, Oregon State
University. PDF Scan.
Dietterich, T. G., and Ullman, D. G., (1987) FORLOG: A Logic-Based
Architecture for Design, in Expert Systems in Computer-Aided Design,
North-Holland, 1987, 1-24, and presented at IFIP WG5.2 Working Conference on
Expert Systems in Computer-Aided Design, Sydney, Australia, February, 1987.
PDF Tech Report.
Dietterich, T. G., and D'Ambrosio, B. (1987). Artificial
Intelligence at OSU. Technical Report 87-30-5, Department of
Computer Science, Oregon State University. PDF Tech Report.
Corpron, Daniel R. (1987). Disjunctions in Forward Chaining
Logic Programming. M.S. Thesis. Department of Computer
Science. Oregon State University. Technical report
87-30-1. PDF Scan.
Dietterich, T. G., and Michalski, R. S., (1986). Learning to
Predict Sequences , in Machine Learning: An
Artificial Intelligence Approach, Volume II, Michalski, R. S.,
Carbonell, J., and Mitchell, T. M., (eds.), Palo Alto: Tioga, 63-106.
Dietterich, T. G., (1986). Learning at the knowledge
level, Machine Learning, 1(3) 287-316. Postscript
preprint.
Dietterich, T. G. (1986). A Knowledge-Level Analysis of
Learning Systems. Technical Report 87-30-4, Department of Computer
Science, Oregon State University, Corvallis, OR. PDF tech report.
Dietterich, T. G., (1986). Induction: Weak but essential
(commentary on Schank, Collins, and Hunter), Behavioral and Brain
Sciences, 9 (4), 1986, 654-655. Postscript
preprint.
Flann, N. and Dietterich, T. G., (1986). Selecting appropriate
representations for learning from examples. In Proceedings of
the National Conference on Artificial Intelligence: AAAI-86,
Philadelphia, PA. Los Altos, CA: Morgan-Kaufmann, 460-466.
PDF of technical report.
Dietterich, T. G., and Bennett, J. S., (1986). The Test
Incorporation Hypothesis and the Weak Methods, Technical Report TR
86-30-4, Department of Computer Science, Oregon State University,
Corvallis, OR. PDF version.
Dietterich, T. G., and Bennett, J. S. (1986). The Test
Incorporation Theory of Problem Solving, In Proceedings of the
Workshop on Knowledge Compilation, Department of Computer Science,
Oregon State University, Corvallis, OR. Technical Report.
PDF version.
Dietterich, T. G., (Ed.), (1986). Proceedings of the
Workshop on Knowledge Compilation, Technical report, Department of
Computer Science, Oregon State University, Corvallis, OR.
Dietterich, T. G., Flann, N. S., and Wilkins, D. C., (1986). A
Summary of Machine Learning Papers from IJCAI-85, Machine
Learning, 1 (2), 227-242. PDF Preprint.
Flann, N. S., Dietterich, T. G. (1986). Two Short Papers on
Machine Learning. Tech. Report 86-30-3. Department of
Computer Science, Oregon State
University. PDF Scan.
Ullman, D. G., Stauffer, L. A., Dietterich,
T. G. (1986). Prelimionary results of an experimental study of
the mechanical design process. Technical Report
86-30-9. Department of Computer Science, Oregon State University.
PDF Scan
Dietterich, T. G., and Michalski, R. S., (1985). Discovering
patterns in sequences of events, Artificial Intelligence, 25,
187-232.
Dietterich, T. G., (1984). Constraint-Propagation
Techniques for Theory-Driven Data Interpretation, Doctoral
Dissertation, Rep. No. STAN-CS-84-1030, Department of Computer
Science, Stanford University, Stanford, California.
Dietterich, T. G., (1984). Learning about systems that contain
state variables, Proceedings of AAAI-84, Austin, Texas, 96-100.
Dietterich, T. G., and Buchanan, B. G., (1983). The role of the
critic in learning systems, in Rissland, E. W., Arbib, M., and
Selfridge, O., Adaptive Control of Ill-defined Systems, Plenum,
127-148.
Dietterich, T. G., and Michalski, R. S., (1983). A comparative review
of selected methods for learning from examples, Chapter 3 of
Machine Learning: An Artificial Intelligence Approach, Michalski, R.
S., Carbonell, J., and Mitchell, T. M., (eds.), Palo Alto: Tioga, 41-82.
Dietterich, T. G., London, R. L., Clarkson, K., and Dromey, G.
(1982). Learning and inductive inference. Chapter XIV in Cohen, P.
R., and Feigenbaum, E. A., The Handbook of Artificial
Intelligence, Vol. III, 323-512, Los Altos, CA: William Kaufmann.
Dietterich, T. G., and Michalski, R. S. (1981). Inductive learning of
structural descriptions: Evaluation criteria and comparative review of
selected methods. Artificial Intelligence, 16, 257-294.
Dietterich, T. G., (1980). Applying general induction methods to
the card game Eleusis, Proceedings of the National Conference on
Artificial Intelligence, AAAI-80, Stanford, California, 218-220.
Scanned PDF.
Dietterich, T. G., (1980). The Methodology of Knowledge
Layers for Inducing Descriptions of Sequentially Ordered Events,
Master's Thesis, Rep. No. UIUCDCS-1024, Department of Computer
Science, University of Illinois, Urbana, Illinois.
Dietterich, T. G., and Michalski, R. S., (1979). Learning and
generalization of characteristic desciptions. Proceedings of the
Sixth International Joint Conference on Artificial Intelligence,
Tokyo, Japan, 223-231.
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
Tom Dietterich, tgd@cs.orst.edu